
Computing Alignment Plots E�ciently
. . . in theory and practice

Peter Krusche Alexander Tiskin

Department of Computer Science

University of Warwick, Coventry, CV4 7AL, UK

LSD 2010



Motivation

This talk is about loss-free local
alignment of (biological) sequences.

Our loss-free alignment algorithms �nd
all local alignments of two input
sequences.

This is computationally very demanding.



What is in this talk?

A computational technique for
computing multiple local alignments at
the same time.

Some discussion about its e�cient
implementation.

Speedup results from di�erent types of
parallelism.



Outline

Introduction

String Comparison Basics

String Alignment

Alignment Plots

Semi-local String Comparison

Computing Alignment Plots

Alignment Plots by Semi-local String Comparison

Using Vector-Parallelism

Using Coarse-Grained Parallelism

E�cient Implementation

Implementation Notes

Experimental Results

Summary and Outlook



String Terminology

A string is a sequence of characters from
an alphabet �.

Example (Genome Data)

Strings are sequences of characters from
{ A, C, G, T }

CAGAGGATGAGGATG



String Terminology

Contiguous subsequences are called
substrings/windows/factors.

CAGAGGATGAGGATG

We also consider not necessarily
contiguous subsequences.

CAGAGGATGAGGATG



String Terminology

Contiguous subsequences are called
substrings/windows/factors.

CAGAGGATGAGGATG

We also consider not necessarily
contiguous subsequences.

CAGAGGATGAGGATG



String Comparison with Errors

Hamming distance: count mismatches.

dist(bbbabababba, abbbbabaaba) = 3

Used e.g. in dot-plots for local
comparison.



String Alignment

Align the maximum number of letters,
preserving order:

abbabbbabbaba

bbabaabbba



String Alignment

Align the maximum number of letters,
preserving order:

abbabbba bbaba

bba b aabb ba



String Alignment

Align the maximum number of letters,
preserving order:

bba b aabb ba

: inserted gaps

abbabbba bbaba



String Alignment

Align the maximum number of letters,
preserving order:

abbabbba bbaba

bba b aabb ba

The aligned letters form the longest com-

mon subsequence (LCS).



String Alignment vs. LCS

The length of the LCS of two strings is a
measure for their similarity.

We de�ne the LCS distance as:

dist(x; y) = m+ n� 2 � jLCS(x; y)j



String Alignment and Edit Distances

Edit distance Minimize the number of
insertions, deletions, and
exchange operations.

Gapped alignment Match score 1,
mismatch score 0, gap
penalty -0.5

Weighted alignment Assign weights to
aligning each pair of characters
from � using a pairwise score

matrix.



O(n2) Solutions for String Alignment

Longest common subsequence Wagner &
Fischer, '74

Global (weighted) alignment Needleman
& Wunsch, '70

Local alignment Smith & Waterman '81



Faster but less accurate approaches

BLAST/similar approaches Heuristic
search based on frequent DNA
substrings to �seed� alignments.

This is very fast!

Less sensitive for aligning
regions of low similarity.

) Can miss alignments!



Faster but less accurate approaches

BLAST/similar approaches Heuristic
search based on frequent DNA
substrings to �seed� alignments.

This is very fast!

Less sensitive for aligning
regions of low similarity.

) Can miss alignments!



Faster but less accurate approaches

Dot-plots Compare all
substrings of a
�xed length w
using the
Hamming
distance.

Plot a point
for every
window pair
scoring above
threshold.

) Does not
account for
gaps!



Faster but less accurate approaches

Dot-plots Compare all
substrings of a
�xed length w
using the
Hamming
distance.

Plot a point
for every
window pair
scoring above
threshold.

) Does not
account for
gaps!



Alignment Plots

Input: Strings x and y, jxj = m,
jyj = n, �xed window length w.

We compare all windows of length w in
x to all windows of length w in y
(pairwise).

We use a weighted alignment score for
comparison.



Computing Alignment Plots

�Naive� algorithm:
Compute scores separately
for each pair of windows in
O(mnw2) time.

Heuristic improvements
(Ott, 2008): �25 speedup,
same asymptotic running
time.

Rasmussen et al., 2004:
E�cient algorithm for
computing scores for all
window pairs with > 90%
similarity.

abbabbba bb

bba b aabb ba

LLCS = 7



Computing Alignment Plots

Why? Very sensitive local comparison,
also for low window similarity
(50-70%). Finds things BLAST
doesn't.

How big? Input sequences can be very
large:
entire genomes should be
possible (30MBases � 1TBase)

Window sizes? Typical w-value: around
100.



New Algorithms for Alignment Plots

Algorithmic Improvements We reduce
dependency on window size: New
practical O(mn

p
w) method.

Vector-Parallelism We can (still) use
vector-parallelism.

Parallel Computation Multi-processor
computation: running time
O(mn

p
w=p) on p processors.



Algorithmic Tool: Semi-local String
Comparison

De�nition

Given two strings x and y, compute
highest-score matrix A with

A(i; j) = jLCS(x; yi : : : yj)j.
We compare all substrings in y to entire
string x.

Algorithm [Schmidt:98,Alves+:06]

We can compute A in O(n2) time.



Implicit Highest-Score Matrices

Theorem (Tiskin:05)

The highest-score matrix for comparing x

and y can be represented by a

permutation of size O(m+ n).

Seaweed Algorithm

We can compute this permutation
incrementally by dynamic programming
in O(mn).



The Seaweed Algorithm

We draw the alignment-dag. . .

a b c a

a

c

b

c

yx



The Seaweed Algorithm

. . . that corresponds to the input strings.

a b c a

a

c

b

c

yx



The Seaweed Algorithm

We insert blue edges for every match.

a b c a

a

c

b

c



The Seaweed Algorithm

Blue edges have weight 1.

a b c a

a

c

b

c



The Seaweed Algorithm

Black edges have weight 0.

a b c a

a

c

b

c



The Seaweed Algorithm

We can extend the dag with matches to
the left and right.

a b c a

a

c

b

c

yx



The Seaweed Algorithm

Drawing this dag partitions the plane
into cells.

a b c a

a

c

b

c

yx



The Seaweed Algorithm

Alignment lengths in A(i; j) correspond
to longest paths.

a b c a

a

c

b

c

yx



The Seaweed Algorithm

Alignment lengths in A(i; j) correspond
to longest paths.

a b c a

a

c

b

c

yx



The Seaweed Algorithm

We compute the lengths of these paths
implicitly by tracing seaweeds.

a b c a

a

c

b

c



The Seaweed Algorithm

We trace seaweeds
through cells.

i

j ?



The Seaweed Algorithm

We trace seaweed
start and end
points.

i

j ?



The Seaweed Algorithm

In a cell, seaweeds
may or may not
cross.

i

j ?



The Seaweed Algorithm

Seaweeds don't
cross in match
cells.

i

j ?



The Seaweed Algorithm

Two seaweeds are
allowed to cross at
most once.

i

j

if i < j

?



The Seaweed Algorithm

Two seaweeds are
allowed to cross at
most once.

i

j

if i < j

?

if i > j



Querying the LCS Distance

Given all seaweeds. . .

a b c a

a

c

b

c



Querying the LCS Distance

. . . we can count seaweeds in an interval:

a b c a

a

c

b

c



Querying the LCS Distance

. . . and obtain the LLCS:
a b c a

a

c

b

c

LLCS = j - i - #TBS

i j



Rational Scores using Seaweeds

We can deal with rational pairwise score
matrices (constant factor slowdown).

w= = 1

w 6= = 0

w = �0:5
Mismatch Match

’$’

’$’ ’$’

’$’

’a’

’b’

’a’

’a’

S(x; y) = LLCS(x0; y0)� 0:5 � (m+ n)



Outline

Introduction

String Comparison Basics

String Alignment

Alignment Plots

Semi-local String Comparison

Computing Alignment Plots

Alignment Plots by Semi-local String Comparison

Using Vector-Parallelism

Using Coarse-Grained Parallelism

E�cient Implementation

Implementation Notes

Experimental Results

Summary and Outlook



Computing Alignment Plots Using Seaweeds

We compute seaweeds for y against all
substrings of x with length w.

yx

g w



Computing Alignment Plots Using Seaweeds

Inside each strip, we count seaweeds
within a sliding w-window.

yx

g w



Computing Alignment Plots Using Seaweeds

Inside each strip, we count seaweeds
within a sliding w-window.

yx

g w



Computing Alignment Plots Using Seaweeds

Inside each strip, we count seaweeds
within a sliding w-window.

yx

g w



Computing Alignment Plots Using Seaweeds

Inside each strip, we count seaweeds
within a sliding w-window.

yx

g w



Computing Alignment Plots Using Seaweeds

Inside each strip, we count seaweeds
within a sliding w-window.

yx

g w



Computing Alignment Plots Using Seaweeds

We have m� w + 1 strips, each strip
takes time O(nw) to process.

) We get running time O(mnw).

This is not yet optimal � the strips
overlap!

How can we improve this?



Computing Alignment Plots Using Seaweeds

We have m� w + 1 strips, each strip
takes time O(nw) to process.

) We get running time O(mnw).

This is not yet optimal � the strips
overlap!

How can we improve this?



Extending Strips Upwards

y
x i` 1

j

A(i; j)



Extending Strips Upwards

yx n` j

n` i+ 1

—A(n` j + 1; n` i+ 1)



Extending Strips Upwards

Theorem (KT:2009)

Given the permutation corresponding to

highest-score matrix A for comparing x

and y, we can obtain the permutation for

highest-score matrix �A comparing the

reversals �x and �y in time O(m+ n).



Computing Alignment Plots Using Seaweeds

We can now achieve some speedup by re-using

overlapping parts of strips.

n

w

´

´

Computing strip seaweeds separately: 2nw operations.

Computing by extending the overlapping area:

n(w ��) + 2n� = n(w +�) operations.



Computing Alignment Plots Using Seaweeds

We can now achieve some speedup by re-using

overlapping parts of strips.

n

w

´

´

Computing strip seaweeds separately: 2nw operations.

Computing by extending the overlapping area:

n(w ��) + 2n� = n(w +�) operations.



Computing Alignment Plots Using Seaweeds

We can now achieve some speedup by re-using

overlapping parts of strips.

n

w

´

´

Computing strip seaweeds separately: 2nw operations.

Computing by extending the overlapping area:

n(w ��) + 2n� = n(w +�) operations.



Computing Alignment Plots Using Seaweeds

Step 1: Work c1(n) = n � (w � k+ 1)

n

w ` k+ 1Overlapping area

k` 1

k` 1



Computing Alignment Plots Using Seaweeds

Step 2: Work c2(n) = n � (k� 1)

Extending downwards k` 1

w ` k+ 1

k` 1

w



Computing Alignment Plots Using Seaweeds

Step 3: Work c3(n) = n �
Pk�1

j=1
k� 1� j

Extending upwards

w

k` 1

k` 1

w ` k+ 1



Computing Alignment Plots Using Seaweeds

Theoretically, optimal choice of k gives
work O(mn

p
w) for computing the

alignment plot.



Vector-Parallel Seaweeds

Standard solution: Process cells in a
wavefront in parallel.

Cell outputs are
independent.



Outline

Introduction

String Comparison Basics

String Alignment

Alignment Plots

Semi-local String Comparison

Computing Alignment Plots

Alignment Plots by Semi-local String Comparison

Using Vector-Parallelism

Using Coarse-Grained Parallelism

E�cient Implementation

Implementation Notes

Experimental Results

Summary and Outlook



Implementation Notes

Current implementation uses C++ and
Intel Assembly (x86 and x86_64,
MMX/SSE2).

Explicit vectorisation of the inner loop
using assembler code.

The core of the code consists of a small
library for implementing operations on
vectors of !-bit integers.



Single CPU Execution Times

Data Set Mikey Berti Jimmy Henry

Input Size 2.7k ˆ 0.6k 2.7k ˆ 2.3k 15k ˆ 97k 80kˆ 80k

Heur 5.1 (¨ 1.0) 41.1 (¨ 1.0) 2677 (¨ 1.0) 11708 (¨ 1.0)

BLCS 3.6 (¨ 1.4) 37.3 (¨ 1.1) 3680 (¨ 0.7) 16191 (¨ 0.7)

Sea-16 1.4 (¨ 3.6) 10.8 (¨ 3.8) 1026 (¨ 2.6) 4514 (¨ 2.6)

Sea-8 0.5 (¨ 10.2) 3.8 (¨ 10.8) 368 (¨ 7.3) 1614 (¨ 7.3)

Sea-8 SMPˆ2 0.3 (¨ 17.0) 3.4 (¨ 12.1) 210 (¨ 12.7) 821 (¨ 14.3)

(Execution times in seconds)



Vector-Parallelism: GPU vs. MMX/SSE

I Vector element size is important when
using MMX/SSE: smaller vector
elements allow higher degree of
parallelism. We use 8 bits per
seaweed for SSE.

I In the GPU implementation, we
always work with 32 bits per seaweed.

I Therefore, the GPU version of the
code can be used for larger window
lengths.



Vector-Parallelism: GPU vs. MMX/SSE

Data Set Berti Jimmy Henry
Input Size 2712ˆ2305 15097ˆ96901 80001ˆ80001

Heur 40 2571 11708

Sea-nonoverlap-SSE2 (k = 1) 5.8 554 2410

Sea-nonoverlap-GPU (k = 1) 5.1 422 1759

Sea-overlap-GPU (k = 4) 4.8 381 1596

(Execution times in seconds)



Parallel E�ciency using MPI

Quadcore Desktop, Linux x86_64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4

cores

Ef
fi

ci
en
cy

Mikey
Berti
Jimmy
Henry



Parallel E�ciency using MPI

MacOS X Task Farm, 32-bit Darwin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 16 32

cores

Ef
fi

ci
en
cy

Mikey
Berti
Jimmy
Henry



Parallel E�ciency using MPI

IBM HPC Cluster, Linux x86_64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 16 32 64

cores

Ef
fi

ci
en
cy

Mikey
Berti
Jimmy
Henry



Outline

Introduction

String Comparison Basics

String Alignment

Alignment Plots

Semi-local String Comparison

Computing Alignment Plots

Alignment Plots by Semi-local String Comparison

Using Vector-Parallelism

Using Coarse-Grained Parallelism

E�cient Implementation

Implementation Notes

Experimental Results

Summary and Outlook



Summary

We have shown a new, fast algorithm for
loss-free local sequence alignment.

Main contribution: reduced dependency
of runtime on the length of the local
alignments.

Method allows to use di�erent types of
parallelism.



Outlook

Better speedup for small problem sizes by smarter

partitioning.

This is useful when using the code for small sequences as a web

service, like BLAST.

Reduce implementation overhead for overlap method.

Less overhead for extending strips upwards allows better re-use of

shared parts of the alignment dag.

Algorithmic improvements when handling more

complex score matrices.

More complex score matrices make the search more sensitive.

Implement theoretically optimal O(mn) method.

This uses distance multiplication, might not be practical.



Thanks for listening!



Questions?

Introduction

String Comparison Basics

String Alignment

Alignment Plots

Semi-local String Comparison

Computing Alignment Plots

Alignment Plots by Semi-local String Comparison

Using Vector-Parallelism

Using Coarse-Grained Parallelism

E�cient Implementation

Implementation Notes

Experimental Results

Summary and Outlook



Window Size Independent Alignment Plots

Consider the seaweeds for two substrings
of x sized h.

gh
gh



Window Size Independent Alignment Plots

We need to eliminate double-crossings to
restore the seaweed behaviour.

gh
gh



Window Size Independent Alignment Plots

Then we obtain the seaweeds for a
substring of x sized 2h.

2h



Window Size Independent Alignment Plots

Theorem (Tiskin:05)

Consider two substrings x1 and x2 of x with

jx1j = jx2j = h.

Given the two implicit highest-score matrices for two

strings x1 and x2 compared to y, we can obtain the

implicit highest-score matrix for x1x2 compared to y

in time O(h+ n logn).(*)

(*) x1 and x2 can have di�erent lengths.



Window Size Independent Alignment Plots

Theorem (Tiskin:05)

Consider two substrings x1 and x2 of x with

jx1j = jx2j = h.

Given the two implicit highest-score matrices for two

strings x1 and x2 compared to y, we can obtain the

implicit highest-score matrix for x1x2 compared to y

in time O(h+ n logn).(*)

(*) x1 and x2 can have di�erent lengths.



Window Size Independent Alignment Plots

We pre-compute seaweeds for substrings of x sized

h 2 f1; 2; 4; : : : ; wg.



Window Size Independent Alignment Plots

We can obtain the seaweeds for every w-window in x

by merging O(logw) pre-computed seaweed strips.


	Introduction
	String Comparison Basics
	String Alignment
	Alignment Plots
	Semi-local String Comparison

	Computing Alignment Plots
	Alignment Plots by Semi-local String Comparison
	Using Vector-Parallelism
	Using Coarse-Grained Parallelism

	Efficient Implementation
	Implementation Notes
	Experimental Results

	Summary and Outlook
	Appendix
	
	


