Algorithm Design for
Multicore Processors
...a high-lLevel approach

Peter Krusche Alexander Tiskin

Department of Computer Science and DIMAP
University of Warwick, Coventry, CV4 7AL, UK

29/May /2009

THE UNIVERSITY OF

WARWICK



Our Motivation

We start with a simple model for
designing parallel algorithms.

Question 1: Are these algorithms
suitable for multicore processors?

Question 2: Can our simple algorithms
be realized efficiently on hierarchical
machines?



Basic Model Ingredients

A BSP computer with p
processors/
cores/threads.

LN




Basic Model Ingredients

A BSP computer with p
processors/
cores/threads.

External and
per-processor memory.

LN




Basic Model Ingredients

A BSP computer with p
processors/
cores/threads.

External and
per-processor memory.

Vector instructions on
each processor.

VvV O114d

Vo114

V O114™

\4unnnn]




Basic Model Ingredients

A BSP computer with p PP

processors/ : Mo
cores/threads.
External and
per-processor memory. voro)| v o] v vorm
Vector instructions on . . .

c AR s A s— R
each processor. & %::l =

C‘p [ I 1 I

Superstep-style code
execution.



Algorithm Ingredients: Sequential Algorithms

We have a problem of size n. We study
.. .the total work W(n)
...the memory requirement M(n)
...the input/output size: Z(n)

We assume that the input and output are stored
in the environment (e.g. external memory).



Algorithm Ingredients: Sequential Algorithms

We have a problem of size n. We study
.. .the total work W(n)
...the memory requirement M(n)
...the input/output size: Z(n)

We assume that the input and output are stored
in the environment (e.g. external memory).

Example (n X n Matrix Multiplication)
The problem size is n.

Standard (non-Strassen) algorithm:
Ww(n) = O(n3), Z(n) = O(n?), and
M(n) = O(n?).



Algorithm Ingredients: Vector Parallelism

Each processor has vector instructions
which work on v elements in parallel.

Example (Inner product of two n-vectors)
If v is constant, this can be implemented
to give runtime O(n/v).



Algorithm Ingredients: Parallel Algorithms

Across all supersteps of the algorithm,
we Look at

... the computation time: W(n, p)
...the communication cost: H(n, p)
...the Local memory cost: M(n, p)



Algorithm Ingredients: Parallel Algorithms

Across all supersteps of the algorithm,
we Look at

... the computation time: W(n, p)
...the communication cost: H(n, p)
...the Local memory cost: M(n, p)

How to do these costs relate to
parallelism on multicore processors 7



Classical Criterion: Work Optimality

An algorithm is work-optimal (w.r.t. a sequential
algorithm) if

W(n, ) = O(W(n)/p).



Classical Criterion: Work Optimality

An algorithm is work-optimal (w.r.t. a sequential
algorithm) if

W(n, ) = O(W(n)/p).

Example (Matrix Multiplication)

Algorithms achieving W (n, p) = O(n3/p) are
work-optimal w.r.t. the sequential O(n?3)
method.



Classical Criterion: Work Optimality

An algorithm is work-optimal (w.r.t. a sequential
algorithm) if

W(n, ) = O(W(n)/p).

Example (Matrix Multiplication)

Algorithms achieving W (n, p) = O(n3/p) are
work-optimal w.r.t. the sequential O(n?3)
method.

We have absolute work-optimality if Q(W(n)) is a
Lower bound on the total work for the given problem,
and the given model.



Scalable Communication and Memory

Scalable communication:

An algorithm achieves
asymptotically scalable
communication if
H(n,p) = O(Z(n)/v°)

(assuming 0 < ¢ < 1).



Scalable Communication and Memory

Scalable communication:

An algorithm achieves
asymptotically scalable
communication if
H(n,p) = O(Z(n)/r°)
(assuming 0 < ¢ < 1).

Scalable memory:

An algorithm achieves
asymptotically scalable memory
it M(n,p) = O(M(n)/n°).

(assuming 0 < c < 1).



Why Scalable Communication and Memory?

Scalable memory allows to increase
number of virtual threads until
subproblems fit into caches.



Why Scalable Communication and Memory?

Scalable memory allows to increase
number of virtual threads until
subproblems fit into caches.

Scalable communication models
algorithmic bus bandwidth sharing.



Why Scalable Communication and Memory?

Scalable memory allows to increase
number of virtual threads until
subproblems fit into caches.

Scalable communication models
algorithmic bus bandwidth sharing.

Algorithms with scalable memory and
communication can be simulated
efficiently on a hierarchical parallel
machine.



Examples

Example (Parallel prefix on n values)
A BSP Algorithm with

W(n,p) = O(n/p),

H(n,p) = O(p)

M(n,p) = O(n/p), and
S O(1).

This is work-optimal and also achieves
scalable communication and memory if

n > p2.



Examples

Example (Grid dag dynamic programming)

Work-optimality is no problem, neither is using
vector parallelism.



Examples

Example (Grid dag dynamic programming)

Work-optimality is no problem, neither is using
vector parallelism.

DO
NN
DO
DO
(NN
DN
NN
NN



Examples

Example (Grid dag dynamic programming)

Work-optimality is no problem, neither is using
vector parallelism.

DN
NN
NN

However: No algorithm can achieve
work-optimality and scalable communication at
the same time! [Papadimitriou/ULlLman:87]



Examples

Example (Longest common subsequences)

For two input sequences of length n, we can achieve
[KT:2007]

W(n,p) = O(n?/p),

H(n, p) O(n/~/p - Log p)

M(n, p) Oo(n/+/p), and
S = O(logp).

...allowing to use w-vector-parallelism in each
thread.

This is work-optimal and achieves scalable
communication/memory.



An Open Problem

Longest Increasing Subsequences
Best sequential algorithm: patience sorting in
O(nlogn).

Various “parallel” algorithms exist:

» W(n,p) = O((nlogn)/p) if p < VI with {
Length of result sequence.

» W(n,p) = O(nlog(n/p)).

Most scalable algorithm known:
W(n,p) = O(n'®°/p)

= Work-optimality can be tricky!



Summary

We can study the suitability of BSP-style
algorithms for multicore systems by
Looking at work-optimality, scalable
communication and scalable memory.

These properties in algorithms can be
improved through non-trivial theoretical
work based on a simple model.



Thanks! Questions?



