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Our Motivation

We start with a simple model for

designing parallel algorithms.

Question 1: Are these algorithms

suitable for multicore processors?

Question 2: Can our simple algorithms

be realized e�ciently on hierarchical

machines?



Basic Model Ingredients

A BSP computer with p
processors/
cores/threads.

External and
per-processor memory.

Vector instructions on
each processor.

Superstep-style code
execution.
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Algorithm Ingredients: Sequential Algorithms

We have a problem of size n. We study

. . . the total work W(n)

. . . the memory requirementM(n)

. . . the input/output size: I(n)
We assume that the input and output are stored
in the environment (e.g. external memory).

Example (n� n Matrix Multiplication)

The problem size is n.

Standard (non-Strassen) algorithm:
W(n) = O(n3), I(n) = O(n2), and
M(n) = O(n2).
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Algorithm Ingredients: Vector Parallelism

Each processor has vector instructions

which work on v elements in parallel.

Example (Inner product of two n-vectors)

If v is constant, this can be implemented

to give runtime O(n=v).



Algorithm Ingredients: Parallel Algorithms

Across all supersteps of the algorithm,

we look at

. . . the computation time: W (n; p)

. . . the communication cost: H(n; p)

. . . the local memory cost: M(n; p)

How to do these costs relate to
parallelism on multicore processors ?
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Classical Criterion: Work Optimality

An algorithm is work-optimal (w.r.t. a sequential
algorithm) if

W (n; p) = O(W(n)=p):

Example (Matrix Multiplication)

Algorithms achieving W (n; p) = O(n3=p) are
work-optimal w.r.t. the sequential O(n3)
method.

We have absolute work-optimality if 
(W(n)) is a

lower bound on the total work for the given problem,

and the given model.
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Scalable Communication and Memory

Scalable communication:

An algorithm achieves

asymptotically scalable

communication if

H(n; p) = O(I(n)=pc)

(assuming 0 < c � 1).

Scalable memory:

An algorithm achieves

asymptotically scalable memory

if M(n; p) = O(M(n)=pc).

(assuming 0 < c � 1).
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Why Scalable Communication and Memory?

Scalable memory allows to increase

number of virtual threads until

subproblems �t into caches.

Scalable communication models

algorithmic bus bandwidth sharing.

Algorithms with scalable memory and

communication can be simulated

e�ciently on a hierarchical parallel

machine.
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Examples

Example (Parallel pre�x on n values)

A BSP Algorithm with

W (n; p) = O(n=p);

H(n; p) = O(p)

M(n; p) = O(n=p); and

S = O(1):

This is work-optimal and also achieves

scalable communication and memory if

n > p2.



Examples

Example (Grid dag dynamic programming)

Work-optimality is no problem, neither is using
vector parallelism.

However: No algorithm can achieve
work-optimality and scalable communication at
the same time! [Papadimitriou/Ullman:87]
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Examples

Example (Longest common subsequences)

For two input sequences of length n, we can achieve

[KT:2007]

W (n; p) = O(n2=p);

H(n; p) = O(n=
p
p � log p)

M(n; p) = O(n=
p
p); and

S = O(log p):

. . . allowing to use v-vector-parallelism in each

thread.

This is work-optimal and achieves scalable

communication/memory.



An Open Problem

Longest Increasing Subsequences

Best sequential algorithm: patience sorting in
O(n logn).

Various �parallel� algorithms exist:

I W (n; p) = O((n logn)=p) if p <
p
l with l

length of result sequence.

I W (n; p) = O(n log(n=p)).

Most scalable algorithm known:
W (n; p) = O(n1:5=p)

) Work-optimality can be tricky!



Summary

We can study the suitability of BSP-style

algorithms for multicore systems by

looking at work-optimality, scalable

communication and scalable memory.

These properties in algorithms can be

improved through non-trivial theoretical

work based on a simple model.



Thanks! Questions?


