
Parallel Longest Increasing
Subsequences in Scalable Time and

Memory

Peter Krusche Alexander Tiskin

Department of Computer Science
University of Warwick, Coventry, CV4 7AL, UK

PPAM 2009



What is in this talk?

Some discussion of asymptotic scalability
measures for parallel algorithms.

A simple algorithmic problem that is
hard to parallelize scalably. . .

. . . and a scalable algorithm for it.



Outline

Parallel Algorithms
The BSP Model
Asymptotic Scalability

Longest Increasing Subsequences
The Problem
Sequential LIS
Permutation String Comparison

Parallel LIS computation
Previous Work
Our Algorithm

Summary and Outlook



Machine Model Ingredients

A BSP computer with p
processors/
cores/threads.

External and
per-processor memory.

Superstep-style code
execution.

M

1 2 3 p

tc1

cp

c2



Machine Model Ingredients

A BSP computer with p
processors/
cores/threads.

External and
per-processor memory.

Superstep-style code
execution.

M

m m m m

tc1

cp

c2



Machine Model Ingredients

A BSP computer with p
processors/
cores/threads.

External and
per-processor memory.

Superstep-style code
execution.

M

tc1

cp

c2

m m m m



Algorithm Ingredients: Sequential Algorithms

We have a problem of size n. We study
. . . the total work W(n)

. . . the memory requirementM(n)

. . . the input/output size: I(n)

We assume that the input and output are
stored in the environment (e.g. external
memory).



Algorithm Ingredients: Parallel Algorithms

Across all supersteps of the algorithm,
we look at

. . . the computation time: W (n; p)

. . . the communication cost: H(n; p)

. . . the local memory cost: M(n; p)

How to do these costs relate to
scalability?



Algorithm Ingredients: Parallel Algorithms

Across all supersteps of the algorithm,
we look at

. . . the computation time: W (n; p)

. . . the communication cost: H(n; p)

. . . the local memory cost: M(n; p)

How to do these costs relate to
scalability?



Classical Criterion: Work Optimality

An algorithm is work-optimal (w.r.t. a sequential
algorithm) if

W (n; p) = O

„W(n)

p

«
:

Example (Matrix Multiplication)
Algorithms achieving W (n; p) = O(n3=p) are
work-optimal w.r.t. the sequential O(n3) method.

We have absolute work-optimality if ˙(W(n)) is a
lower bound on the total work for the given problem,
and the given model.



Classical Criterion: Work Optimality

An algorithm is work-optimal (w.r.t. a sequential
algorithm) if

W (n; p) = O

„W(n)

p

«
:

Example (Matrix Multiplication)
Algorithms achieving W (n; p) = O(n3=p) are
work-optimal w.r.t. the sequential O(n3) method.

We have absolute work-optimality if ˙(W(n)) is a
lower bound on the total work for the given problem,
and the given model.



Classical Criterion: Work Optimality

An algorithm is work-optimal (w.r.t. a sequential
algorithm) if

W (n; p) = O

„W(n)

p

«
:

Example (Matrix Multiplication)
Algorithms achieving W (n; p) = O(n3=p) are
work-optimal w.r.t. the sequential O(n3) method.

We have absolute work-optimality if ˙(W(n)) is a
lower bound on the total work for the given problem,
and the given model.



Scalable Communication and Memory

Scalable communication:
An algorithm achieves
asymptotically scalable
communication if
H(n; p) = O(I(n)=pc)
(assuming 0 < c » 1).

Scalable memory:
An algorithm achieves
asymptotically scalable memory
if M(n; p) = O(M(n)=pc).
(assuming 0 < c » 1).



Scalable Communication and Memory

Scalable communication:
An algorithm achieves
asymptotically scalable
communication if
H(n; p) = O(I(n)=pc)
(assuming 0 < c » 1).

Scalable memory:
An algorithm achieves
asymptotically scalable memory
if M(n; p) = O(M(n)=pc).
(assuming 0 < c » 1).



Why Scalable Communication and Memory?

Scalable memory allows to increase
number of virtual threads until
subproblems fit into caches.

Scalable communication models
algorithmic bus bandwidth sharing.

Algorithms with scalable memory and
communication can be simulated
efficiently on more complex parallel
machine models.



Why Scalable Communication and Memory?

Scalable memory allows to increase
number of virtual threads until
subproblems fit into caches.

Scalable communication models
algorithmic bus bandwidth sharing.

Algorithms with scalable memory and
communication can be simulated
efficiently on more complex parallel
machine models.



Why Scalable Communication and Memory?

Scalable memory allows to increase
number of virtual threads until
subproblems fit into caches.

Scalable communication models
algorithmic bus bandwidth sharing.

Algorithms with scalable memory and
communication can be simulated
efficiently on more complex parallel
machine models.



Outline

Parallel Algorithms
The BSP Model
Asymptotic Scalability

Longest Increasing Subsequences
The Problem
Sequential LIS
Permutation String Comparison

Parallel LIS computation
Previous Work
Our Algorithm

Summary and Outlook



The Problem

Given a sequence of n numbers, to find
the longest subsequence that is
increasing.

2, 9, 1, 3, 7, 5 , 6, 4, 8



The Problem

Given a sequence of n numbers, to find
the longest subsequence that is
increasing.

2, 9, 1, 3, 7, 5, 6, 4, 8



The Problem

Given a sequence of n numbers, to find
the longest subsequence that is
increasing.

2, 9, 1, 3, 7, 5, 6, 4, 8

(alternate solution)



Sequential Algorithms

The LIS can be found by patience
sorting.
(see [Knuth:73, Aldous/Diaconis:99, Schensted:61]).

Another approach: LIS via permutation
string comparison.
(see [Hunt/Szymanski:77]).

For both algorithms, W(n) = O(n logn) in the
comparison-based model.



Permutation String Comparison

Definition (Input data)
Let x = x1x2 : : : xn and y = y1y2 : : : yn be two
permutation strings on an alphabet ˚.

Definition (Subsequences)
A subsequence u of x: u can be obtained by deleting
zero or more elements from x.

Definition (Longest Common Subsequences)
An LCS (x, y) is any string which is subsequence of
both x and y and has maximum possible length.
Length of these sequences: LLCS (x, y).



LIS via LCS

How to compute comparison-based LIS
using LCS computation?

1. Copy the sequence and sort it.
2. Compute the LCS of the sequence

and its sorted copy.



LCS grid dags and highest-score matrices

I The LCS Problem can be
represented as longest
path problem on a grid
dag.

I In the LIS case, we have
n diagonal edges of
length 1.

I Horizontal edges have
length 0.

I The LIS corresponds to a
longest top-to-bottom
path.

1 2 3 4

4

3

1

2



LCS grid dags and highest-score matrices

I The LCS Problem can be
represented as longest
path problem on a grid
dag.

I In the LIS case, we have
n diagonal edges of
length 1.

I Horizontal edges have
length 0.

I The LIS corresponds to a
longest top-to-bottom
path.

1 2 3 4

4

3

1

2



LCS grid dags and highest-score matrices

I The LCS Problem can be
represented as longest
path problem on a grid
dag.

I In the LIS case, we have
n diagonal edges of
length 1.

I Horizontal edges have
length 0.

I The LIS corresponds to a
longest top-to-bottom
path.

1 2 3 4

4

3

1

2



LCS grid dags and highest-score matrices

I The LCS Problem can be
represented as longest
path problem on a grid
dag.

I In the LIS case, we have
n diagonal edges of
length 1.

I Horizontal edges have
length 0.

I The LIS corresponds to a
longest top-to-bottom
path.

1 2 3 4

4

3

1

2



Outline

Parallel Algorithms
The BSP Model
Asymptotic Scalability

Longest Increasing Subsequences
The Problem
Sequential LIS
Permutation String Comparison

Parallel LIS computation
Previous Work
Our Algorithm

Summary and Outlook



Parallel LIS Algorithms

Garcia,2001

LIS by parallel dynamic programming.

W (n; p) = O(n2=p)

This is not work optimal.



Parallel LIS Algorithms

Nakashima/Fujiwara, 2006

PRAM algorithm with

W (n; p) = O((n logn)=p)

(. . . but only if p < n=k2)

Work-optimality is restricted:
Theorem (Erdős, 1935)
Every sequence of n integers has a monotonic
subsequence of length –

p
n.



Parallel LIS Algorithms

Semé, 2006

BSP algorithm with

W (n; p) = O(n log(n=p))

This is asymptotically sequential.



Our Algorithm

We have a BSP algorithm for the LIS
problem with

W (n; p) =
n1:5

p

H(n; p) =
n
p
p

M(n; p) =
n
p
p

(. . . which, in fact, can solve a slightly more general
problem than LIS)



Our Tool: Semi-local Sequence Comparison

Definition (Substrings)
A substring of any string x can be obtained by
removing zero or more characters from the beginning
and/or the end of x.

Definition (Highest-score matrix)
The element A(i; j) of the LCS highest-score matrix of
two strings x and y gives the LLCS of yi : : : yj and x.

Definition (Semi-local LCS)
Solutions to the semi-local LCS problem are given by
a highest-score matrix A(i; j).



Critical points

Definition (Critical Point)
Odd half-integer point (i` 1

2
; j + 1

2
) is critical iff.

A(i; j) + 1 = A(i` 1; j) = A(i; j+ 1) = A(i` 1; j+ 1).

Theorem

1. For permutation string inputs of length n, N = 2n
such critical points are sufficient to implicitly
represent the whole matrix
[Schmidt:95/Alves+:06/Tiskin:05].

2. There is an algorithm to obtain these points in
time O(n1:5) [Tiskin:06].



Critical points

Definition (Critical Point)
Odd half-integer point (i` 1

2
; j + 1

2
) is critical iff.

A(i; j) + 1 = A(i` 1; j) = A(i; j+ 1) = A(i` 1; j+ 1).

Theorem

1. For permutation string inputs of length n, N = 2n
such critical points are sufficient to implicitly
represent the whole matrix
[Schmidt:95/Alves+:06/Tiskin:05].

2. There is an algorithm to obtain these points in
time O(n1:5) [Tiskin:06].



Highest-score matrices

Example (Highest-score matrix for x =4312 and
y =1234)

-1 0 1 2 3 4 5 6 7 8
-5 4 4 4 4 4 4 4 4 4 4
-4 3 4 4 4 4 4 4 4 4 4
-3 2 3 3 4 4 4 4 4 4 4
-2 1 2 3 4 4 4 4 4 4 4
-1 0 1 2 3 3 3 3 4 4 4
0 -1 0 1 2 2 2 2 3 4 4
1 -2 -1 0 1 1 1 2 3 4 4
2 -3 -2 -1 0 1 1 2 3 4 4
3 -4 -3 -2 -1 0 1 2 3 4 4
4 -5 -4 -3 -2 -1 0 1 2 3 4



Highest-score Matrix Multiplication

Given the implicit highest-score matrices DA and
DB for two adjacent grid dag blocks, we compute
the distribution matrix dC for the union of these
blocks.

DC

DA

DB



Highest-score Matrix Multiplication

We need to compute a (min;+) matrix
product

dC(i; k) = min
j
dA(i; j) + dB(j; k)

For two implicit highest-score matrices of
size N, we can compute this product in
O(N1:5) time.



Matrix Multiplication as a Cube

DA

DB

i

k

j

DC

Cube contains all elementary products
mindA(i; j) + dB(j; k).



Divide-and-conquer Multiplication

Recursive Partitioning

Recursion level

hˆ h
0

1

2

3

h
2
ˆ h

2

h

4
ˆ h

4

h

8
ˆ h

8

DC

We locate nonzeros by recursively partitioning DC into
blocks.



Divide-and-conquer Multiplication

Relevant Nonzeros

DA

DB

DC

For each block in DC, only a subset of nonzeros in DA
and DB are relevant.



Divide-and-conquer Multiplication

I The smaller the blocks, the less
nonzeros are relevant!

I All data for processing a block of size
h can be stored in space O(h).

I We can partition and compute the
number of nonzeros in a block in time
O(h).

) We get a divide-and-conquer
algorithm for multiplying
highest-score matrices of size N
running in O(N1:5).



Parallel Multiplication
We first partition DC into p blocks and then finish the
computation on these blocks independently
[K,Tiskin:06].

p = 16; N = 49
DC

Problem: Nonzeros might be concentrated in
p
p

blocks. Then, we get W (n; p) = O(N1:5=
p
p).



Parallel Multiplication
We first partition DC into p blocks and then finish the
computation on these blocks independently
[K,Tiskin:06].

p = 16; N = 49
DC

Problem: Nonzeros might be concentrated in
p
p

blocks. Then, we get W (n; p) = O(N1:5=
p
p).



Parallel Multiplication

To apply this algorithm to the LIS
problem, we need to (min;+)-multiply
work-optimally!



Work-optimal Multiplication

Lemma
We can locate a set of k nonzeros in a block of
size h in time O(h

p
k).

Load-balancing

I Processors locate groups of maximally N=p
nonzeros.

I We have maximally p complete groups (N
nonzeros overall).

I We have maximally one incomplete group on
each processor.



Work-optimal Multiplication

Lemma
We can locate a set of k nonzeros in a block of
size h in time O(h

p
k).

Load-balancing

I Processors locate groups of maximally N=p
nonzeros.

I We have maximally p complete groups (N
nonzeros overall).

I We have maximally one incomplete group on
each processor.



Work-optimal Multiplication

Lemma
We can locate all nonzeros using
W (N; p) = O(N1:5=p).

Proof.
On each processor we locate O(N=p) nonzeros a block
of size N=

p
p for maximally one complete and one

incomplete group. We get

W (N; p) = O

„
N=
p
p ´
q
N=p

«
= O(N1:5=p)



LIS using parallel (min;+)-multiplication

We recursively merge highest score matrices in parallel.

1 2 3

n=4

n=4

n=4

n=4

n=2

n=2

n



Scalable Memory

Lemma
Our multiplication procedure requires
M(n; p) = O(n=

p
p).

Proof ideas.
Lower bound: our blocks require an input of size
O(n=

p
p) for the recursive partitioning.

Upper bound: We use the fact that the input strings
are permutations to bound the number of matches on
each processor as O(N=

p
p).

Matches can be distributed in a scalable fashion using
e.g. sorting by regular sampling.



Discussion of Practicality

Speedup over the sequential algorithm is possible
if input is distributed equally between processors.

I This is interesting if we have big records to
compare – in the comparison-based model, our
sequence elements do not have to be numbers.

I Speedup for large sequences is limited due to
asymptotically very fast sequential algorithm.



Outline

Parallel Algorithms
The BSP Model
Asymptotic Scalability

Longest Increasing Subsequences
The Problem
Sequential LIS
Permutation String Comparison

Parallel LIS computation
Previous Work
Our Algorithm

Summary and Outlook



Summary and Outlook

I We have shown a scalable approach to
computing longest increasing subsequences.

I We are currently working on an improvement
to the parallel multiplication algorithm:

) We aim to reduce the work for multiplication
to W (n; p) = O((n logn)=p).
This will bring us a step closer to achieving
general work-optimality in a scalable fashion.



Thanks for listening!



Questions?

Parallel Algorithms
The BSP Model
Asymptotic Scalability

Longest Increasing Subsequences
The Problem
Sequential LIS
Permutation String Comparison

Parallel LIS computation
Previous Work
Our Algorithm

Summary and Outlook


	Parallel Algorithms
	The BSP Model
	Asymptotic Scalability

	Longest Increasing Subsequences
	The Problem
	Sequential LIS
	Permutation String Comparison

	Parallel LIS computation
	Previous Work
	Our Algorithm

	Summary and Outlook

