
AUTHOR: Peter Krusche DEGREE: Ph.D.

TITLE: Parallel String Alignments: Algorithms and Applications

DATE OF DEPOSIT: .

I agree that this thesis shall be available in accordance with the regulations governing
the University of Warwick theses.
I agree that the summary of this thesis may be submitted for publication.
I agree that the thesis may be photocopied (single copies for study purposes only).
Theses with no restriction on photocopying will also be made available to the British Library
for microfilming. The British Library may supply copies to individuals or libraries. subject to a
statement from them that the copy is supplied for non-publishing purposes. All copies supplied
by the British Library will carry the following statement:

“Attention is drawn to the fact that the copyright of this thesis rests with
its author. This copy of the thesis has been supplied on the condition that
anyone who consults it is understood to recognise that its copyright rests with
its author and that no quotation from the thesis and no information derived
from it may be published without the author’s written consent.”

AUTHOR’S SIGNATURE: .

USER’S DECLARATION

1. I undertake not to quote or make use of any information from this thesis
without making acknowledgement to the author.

2. I further undertake to allow no-one else to use this thesis while it is in my
care.

DATE SIGNATURE ADDRESS

. .

. .

. .

. .

. .

Parallel String Alignments: Algorithms and

Applications

by

Peter Krusche

Thesis

Submitted to The University of Warwick

for the degree of

Doctor of Philosophy

Department of Computer Science

May 2010

Contents

List of Tables iv

List of Figures v

Acknowledgments viii

Declarations ix

Abstract xi

Abbreviations xii

Chapter 1 Introduction 1

Chapter 2 Engineering Parallel Algorithms 6

2.1 Models of parallel computation . 6

2.2 The BSP model and its variants . 9

2.3 Our model . 10

2.4 Implementing parallel algorithms . 15

Chapter 3 An Introduction to Semi-local String Comparison 17

3.1 Overview . 17

3.2 Integers, matrices and permutations 18

3.3 Monge matrices . 19

3.4 Longest common subsequences . 22

3.5 Semi-local string comparison and the seaweed algorithm 24

i

3.6 Seaweeds as permutations . 28

3.7 Highest-score matrix composition . 29

Chapter 4 Parallel String Comparison 31

4.1 Background . 31

4.2 Parallel unit-Monge matrix multiplication in O(1) supersteps 37

4.3 Parallel unit-Monge matrix multiplication in O(log p) supersteps . . 47

4.4 Parallel LCS computation . 56

4.5 Parallel permutation string comparison 59

Chapter 5 Parameterized Semi-local String Comparison 67

5.1 Background . 67

5.2 The transposition network method 71

5.3 Sparse semi-local string comparison 73

5.4 Semi-local LCS computation for run-length compressed strings . . . 78

5.5 High similarity and dissimilarity string comparison 79

Chapter 6 Computing Alignment Plots Efficiently 88

6.1 Background . 88

6.2 String alignments with pairwise scores 93

6.3 Alignment plots . 96

6.4 A data-parallel alignment plot algorithm using only vertical vector

operations . 99

6.5 A data-parallel alignment plot algorithm for graphics processors . . 105

6.6 Reducing redundant computation for small window sizes 116

6.7 A coarse-grained parallel algorithm 121

6.8 Experimental results . 122

Chapter 7 Conclusion and Outlook 127

7.1 Summary . 127

7.2 Outlook . 130

ii

Appendix A A vector library using MMX/SSE 133

A.1 Introduction . 133

A.2 Programmer’s interface . 134

A.2.1 Class IntegerVector . 135

A.2.2 Class CharMapping . 139

A.3 Vector operations and their efficient implementation 140

A.3.1 Addition with carry . 141

A.3.2 Vector addition . 143

A.3.3 Vector shifting . 146

A.3.4 Specialized implementation for 8-bit and 16-bit words 148

A.3.5 Manipulating slices of vectors 150

A.4 Vector library list of files . 152

Appendix B A BSP library for C++ 154

B.1 Introduction . 154

B.2 Extending BSPonMPI . 155

B.3 C++ library design . 157

B.4 BSP library list of files . 164

Appendix C Alignment Plot Code Documentation 167

C.1 Introduction . 167

C.2 The alignment plot tools . 167

C.3 Compiling the code . 170

C.4 List of files . 174

iii

List of Tables

3.1 LCS lengths given by a highest-score matrix 25

4.1 Parallel algorithms for LCS/Levenshtein distance computation of two

strings with length n on p processors. We show parallel work W (n, p),

communication H(n, p) and the number of supersteps S. 33

6.1 Execution times in seconds and speedups 123

6.2 Execution times in seconds using overlapping strips and a GPU . . . 123

6.3 Execution times in seconds and speedups for the MPI Version (Sea-8) 123

7.1 Results on parallel string comparison 129

7.2 Results on parameterized semi-local string comparison 130

A.1 Vector library list of files and contents 152

B.1 BSP C++ library: list of files . 164

C.1 WindowAlignment command line options 168

C.2 SCons compile options . 173

C.3 “Seaweed code” list of files . 174

iv

List of Figures

2.1 A processor-memory hierarchy that can be modelled by Multi-BSP . 8

2.2 Extended BSPRAM model . 11

3.1 Example: density and distribution matrices 20

3.2 Example: extended alignment dag 23

3.3 Querying LCS scores by seaweeds . 27

3.4 Seaweeds, seaweed braid, seaweed permutation and implicit highest-

score matrix . 28

3.5 Highest-score matrix composition by seaweeds 29

3.6 Trivial and nontrivial seaweeds in highest-score matrix composition . 30

3.7 Highest-score matrix composition by seaweed braids 30

4.1 Matrix product cube representation and relevant nonzeros 38

4.2 Computing block-minima in PC by parallel prefix 43

4.3 Cube representation of (min,+) matrix product 44

4.4 Nonzeros in PC . 45

4.5 Partitioning a PC-block . 45

4.6 Illustration of Algorithm 3 . 52

4.7 Partitioning into a grid of p× p blocks 53

4.8 Potential speedup for LCS computation through scalable communi-

cation, p = 16 . 57

4.9 Highest-score matrix composition for permutation strings 60

v

4.10 Estimated LIS computation speedup if input is known to all proces-

sors, input sequence length fixed as n = 10000 62

4.11 Estimated LIS computation speedup for distributed input strings,

number of processors fixed as p = 16, record size r = 2 63

4.12 Estimated LIS computation speedup for distributed input strings,

number of processors fixed as p = 16, record size r = 10 63

5.1 Parameterized LCS Computation . 69

5.2 Bit-parallelism through addition in 0-1-transposition networks 73

5.3 Comparison network of an alignment dag 74

5.4 Alignment dag for run-length compressed strings 78

5.5 LCSNET(x, y) with 0/1 inputs . 82

5.6 Comparing highly similar strings . 83

5.7 Interpreting 0-1 transposition network cells and their inputs as contours. 84

6.1 String alignment example . 89

6.2 Alignment profile produced by the EARS webservice 91

6.3 Full alignment plot . 92

6.4 Custom alignment dag for more general substitution matrices 93

6.5 Alignment dag blow-up . 94

6.6 Seaweeds with a 4-grid . 95

6.7 Alignment plot illustration . 96

6.8 A highest-scoring path given by (w, r)-restricted highest-score matrices 97

6.9 Seaweeds in a sliding window . 99

6.10 Counting seaweeds in a sliding window 103

6.11 CPU and GPU as BSP computers with external memory 106

6.12 Transposition network evaluation by stages 109

6.13 Using strip overlap to speed up computation 117

6.14 Highest-scoring paths for reversals of input strings 117

6.15 Example for Lemma 6.6.1 . 117

6.16 Computing seaweeds for k overlapping strips 120

vi

6.17 Distributing strip computations . 121

6.18 Speedup of bit-parallel LCS computation over dynamic programming 124

7.1 Dual graph of the alignment dag . 131

A.1 Class IntegerVector data storage format 140

vii

Acknowledgments

First and foremost I would like to thank my supervisor, Dr. Alexander Tiskin, who
has been a constant source of inspiration, insight, new ideas, and encouragement
for me throughout my time of working on this thesis. His patience and attention to
detail when reading and commenting on drafts of papers, abstracts and this thesis
have been invaluable. I have learned a lot from our discussions about the science
of strings and seaweeds, parallel computation, and many other things. This thesis
would not have been possible without him.

I am indebted to my office mates and colleagues at the Department of Com-
puter Science not only for providing a stimulating environment for research, but also
for entertainment, coffee breaks, and discussions. I am especially grateful to Haris
Aziz, John Fearnley, and Michal Rutkowski for their company through a series of
different offices, to Harald Räcke, Marcin Jurdziński, and Artur Czumaj for giving
me the opportunity to teach seminars on algorithms and for coming up with exciting
problem sheets for these, as well as to Oded Lachish for entertaining and helpful
discussions. My studies were supported financially by a PhD studentship from the
Department of Computer Science, as well as by travel funding from the Algorithms
and Complexity Research Group at the University of Warwick.

I would also like to thank Sascha Ott and the people from the Warwick Sys-
tems Biology Centre for explaining their work and helping to adapt the algorithms
from this thesis to their applications. Furthermore, I would like to thank everyone at
the Centre for Scientific Computing, where most of the computational experiments
of this thesis were conducted.

My time at Warwick University would probably have been shorter, but also
much less enjoyable without the company of my flatmates, friends, fellow volleyball
players, and too many others to mention. Special thanks goes out to Ezra Bay-
dur (for the funk), Karishma Balani (MSD), Jan Becker (who was helpful in all
sorts of situations), Gernot Herbst (who should work more), Hélöıse Imbault (for
procrastinating for me, saving me time), Bruno Maia (for the science of cycling),
Mike Pierides (all kinds of doctors can be fun), Kristin Schulz (for being a perfect
housemate), Chris Sohrmann (the master of everything gazebo), Aleksa Starovic
(for lifting heavy things, twice), and Saskia Toennesmann (for the cupcakes!).

Finally, I would like to thank my family for their support and at least trying
to understand what they call the “real-world implications” of my work, and Sharae
for her patience and understanding, as well as for setting a good example for me.

viii

Declarations

I hereby declare that this thesis represents my own work and to the best of my

knowledge it contains no materials previously published or written by another per-

son, nor material which to a substantial extent has been accepted for the award of

any other degree at The University of Warwick or any other educational institution,

except where the acknowledgment is made in the thesis. Any contribution made to

the research by others, with whom I have worked at The University of Warwick or

elsewhere, is explicitly acknowledged in the thesis.

Parts of this thesis have been submitted for publication.

An initial version of Chapter 2 was accepted as an abstract for a talk at the Theory

& Many-Cores 2009 Workshop (see http://www.umiacs.umd.edu/conferences/

tmc2009/).

Material from Chapter 4 has been published as:

P. Krusche and A. Tiskin. Efficient parallel string comparison. In Proceedings of

ParCo, vol. 38 of NIC Series, John von Neumann Institute for Computing, pp.

193–200, 2007.

P. Krusche and A. Tiskin. Longest increasing subsequences in scalable time and

memory. In proceedings of PPAM 2009, Wroclaw, to appear. 2009

P. Krusche and A. Tiskin. New algorithms for efficient parallel string comparison.

In proceedings of SPAA 2010, to appear. 2010

ix

http://www.umiacs.umd.edu/conferences/tmc2009/
http://www.umiacs.umd.edu/conferences/tmc2009/

Material from Chapter 5 has been published as:

P. Krusche and A. Tiskin. String comparison by transposition networks. In London

Algorithmics 2008: Theory and Practice, vol. 11 of Texts in Algorithmics, College

Publications, 2009.

Material from Chapter 6 has been published as:

P. Krusche and A. Tiskin. Computing Alignment Plots Efficiently. In Proceedings

of ParCo 2009. To appear. 2009

The program code from this thesis has been used to implement the EARS webservice:

http://wsbc.warwick.ac.uk/ears/main.php, and in the corresponding paper:

E. Picot, A. Tiskin, P. Brown, P. Krusche, I. Carré, and Sascha Ott. Evolutionary

analysis of regulatory sequences (EARS) in plants, The Plant Journal, vol. 64:1,

pp. 165–176, 2010.

x

http://wsbc.warwick.ac.uk/ears/main.php

Abstract

String comparison is a fundamental component in many of today’s applica-
tions of computing, including bio-informatics, signal processing, databases, internet
search and many others. A specific type of practical string comparison problem
is computing the longest common subsequence (LCS) of two input strings. The
LCS problem is equivalent to computing edit distances and strongly connected to
computing string alignments, which are of great importance for applications in com-
putational biology.

In this thesis, we show new approaches to using parallel computation in string
comparison, which allow us to understand algorithms for computing the LCS on the
word-RAM, the PRAM and the BSP models in a unified fashion. This approach is
based on recent results on algorithms for semi-local string comparison. Semi-local
string comparison is a straightforward extension of the standard LCS problem, in
which we ask to compute the LCS for one string and all substrings of another string.
We use a revised approach to analyzing BSP algorithms which includes the analysis
of communication and I/O cost, as well as of the local memory requirements. We
define asymptotic scalability in memory and communication. Scalable communi-
cation captures the input/output cost of partitioning a problem into subproblems,
and achieving scalable memory allows to obtain small subproblems which can fit into
processor caches. In this thesis, we show how to achieve scalable memory and com-
munication for computing longest common subsequences, as well as for computing
longest increasing subsequences.

Furthermore, we present new algorithms for semi-local string comparison
that are parameterized by the similarity of the input strings, and we discuss aspects
of their practical implementation. Alongside with theoretical results, this thesis also
comprises an algorithm engineering project, which has the goal of allowing practical
applications to make use of the techniques of semi-local string comparison. For a
particular problem of local string comparison in evolutionary biology, our methods
have improved upon the fastest existing methods. We have obtained a speedup by a
factor of more than 14 over the fastest existing implementation, running on a single
processor, and achieved the potential to scale to hundreds of processors. This has
greatly increased the feasible size of the input sequences that can be compared using
our method, potentially allowing loss-free local comparison of entire genomes.

xi

Abbreviations

BSP : Bulk-synchronous parallel(-ism)

BSMP : Bulk-synchronous message passing

CPU : Central processing unit

GPU : Graphics processing unit

DRMA : Direct remote memory access

Flop : Floating point operation

LCS : Longest common subsequence

LIS : Longest increasing subsequence

LLCS : Length of the longest common subsequence

MPI : Message-passing interface

PUB : Paderborn University BSP-Library

PRAM : Parallel random access machine

RAM : Random access machine

SIMD : Single instruction, multiple data

SMP : Symmetric multiprocessing

SPMD : Single program multiple data

xii

Chapter 1

Introduction

String comparison is a fundamental component in many of today’s applications of

computing, including bio-informatics, signal processing, databases, internet search

and many others. A specific type of practical string comparison problem is comput-

ing the longest common subsequence (LCS) of two input strings. The LCS problem

is equivalent to computing edit distances and strongly connected to computing string

alignments, which are of great importance for applications in computational biol-

ogy. String alignments give a natural way to compare genetic sequences. Levenshtein

[1966] was first to formalize edit-distance problems, Needleman and Wunsch [1970]

gave first algorithms for string alignment, and Wagner and Fischer [1974] gave the

first efficient dynamic programming algorithm for the LCS problem. Gusfield [1997]

gives an introduction to string alignment algorithms and biological applications.

In general, longest common subsequences are not difficult to compute, stan-

dard algorithms compute the LCS of two strings of length n in time O(n2). The

first algorithm running in quadratic time and space was shown by Wagner and Fis-

cher [1974], and soon after this, a linear space algorithm was given by Hirschberg

[1975]. Especially when comparing large sequences, it is important to be able to per-

form LCS computations efficiently and in short time. Therefore, faster methods for

computing the LCS and related measures of string similarity have been researched

extensively since these first algorithms were shown.

1

For the general LCS problem, a lower bound of Ω(n2) for the decision tree

model of computation was shown by Aho et al. [1976]. Approaches for obtaining

practical speedup over the standard dynamic programming algorithms have there-

fore fallen into two categories. Hunt and Szymanski [1977] have shown the first

algorithm that is parameterized by the similarity of the input strings, allowing run-

ning times of o(n2) for highly similar input strings, but Ω(n2) in the worst case.

Apostolico and Guerra [1987] gave an improved algorithm which and takes time

O(n2) in the worst case, and runs faster for highly similar input strings.

The other approach to faster LCS computation has been to consider more

practical computational models, including different types of parallel computation.

Masek and Paterson [1980] showed that an asymptotic running time of O(n2/ log n)

can be achieved by using small block precomputation (Arlazarov et al. [1970] ap-

plied this method first in an algorithm for boolean matrix multiplication). Their

approach is based on precomputing the updates to the dynamic programming ta-

ble for blocks of size log n × log n, using the fact that the number of types of such

blocks is o(2log2 n). This method is related to machine word parallelism, in which

operations are carried out in parallel on multiple values encoded in a fixed-size ma-

chine word, using standard arithmetic operations. Recently, the word-RAM model

has established itself as an approach to model such word-level parallelism. Lower

bounds for the RAM model do not necessarily apply to the word-RAM, e.g. sorting

can be done in o(n log n) time (see Hagerup [1998] for further references and discus-

sion). Although different from the RAM model of computation (Aho et al. [1974]),

the word-RAM is a practical model for computation since it captures a common

feature in almost all modern processors: the ability to carry out complex operations

on a single machine word in a constant number of machine cycles. The word-RAM

approach is also related to traditional vector parallelism, in which single machine

instructions are allowed to perform the same operation on multiple items of data

at the same time. First models for this type of parallelism were proposed e.g. by

Pratt et al. [1974] and studied in detail by Blelloch [1990]. In string comparison

algorithms, this type of parallelism has been exploited e.g. for obtaining bit-parallel

2

algorithms (see Allison and Dix [1986]; Crochemore et al. [2001]; Hyyrö [2004]). An-

other example are the subsequence matching algorithms by Boasson et al. [2001],

who use a customized word-RAM-style model named the MPRAM. Another sub-

quadratic sequence alignment algorithm was shown by Crochemore et al. [2002],

who use Lempel-Ziv compression (see Lempel and Ziv [1976]) to speed up the com-

putation parameterized by the entropy of the input strings.

Another practical approach to obtain faster LCS algorithms is by using par-

allel computation on a fixed or arbitrary number of processors. Classical theoretical

models for parallel computation are the PRAM model (Fortune and Wyllie [1978];

Goldschlager [1982]), and the BSP model (Valiant [1990]). Apostolico et al. [1990]

showed a PRAM algorithm for LCS computation, and McColl [1995] showed a sim-

ple method to obtain a BSP algorithm for dynamic programming which is directly

applicable to LCS computation.

In this thesis, we show new approaches to parallel string comparison, which

allow us to understand algorithms for computing the LCS on the word-RAM, the

PRAM, and the BSP model in a unified fashion. This approach is based on new

algorithms for semi-local string comparison by Tiskin [2010a]. Semi-local string

comparison is a straightforward extension of the standard LCS problem, in which

we ask to compute the LCS for one string and all substrings of another string.

Although this problem has a wide range of other algorithmic applications (Tiskin

[2006, 2010a]), we will restrict our attention to its applications in string compar-

ison. In this work, we show parallel algorithms for semi-local string comparison,

discuss aspects of their practical implementation, and show how to apply these new

methods to a problem in computational biology. Alongside with theoretical results,

this thesis also comprises an algorithm engineering project, which has the goal of

enabling practical applications to make use of the techniques of semi-local string

comparison. We will show one particular application in evolutionary biology, for

which our methods have improved upon the fastest existing methods by a factor of

over 14, running on a single processor. Furthermore, our implementation has the

potential of using parallel computation on hundreds of processors. This has greatly

3

increased the feasible size of the input sequences which can be compared using our

method, potentially allowing loss-free local comparison of entire genomes.

This thesis is structured as follows. In Chapter 2, we show a simple theoret-

ical model for parallelism which forms the basis of our algorithmic analysis, and we

discuss the practicality of this model for algorithm implementation. Our model aims

to capture the main features of modern parallel computer systems, which includes

vector or word-parallelism and data locality, as well as all aspects of an algorithm’s

scalability. In particular, we analyse the scalability of computation, communication

and memory separately. This allows us to study algorithms using a reasonably sim-

ple theoretical model, and still ensures that these algorithms can be implemented

efficiently. After this, we introduce the basic concepts of semi-local string compar-

ison in Chapter 3. In Chapter 4, we discuss new scalable parallel algorithms for

semi-local string comparison. The main new feature of these algorithms is their

scalability in communication, and lower synchronisation cost compared to existing

algorithms. The core ingredient of these algorithms are new parallel methods for

distance multiplication of a certain subclass of Monge matrices. We discuss the prac-

ticality of these new algorithms for two applications in string comparison: parallel

LCS, and longest increasing subsequence (LIS) computation. Furthermore, these

new methods could be applied as a plugin for other algorithmic applications as well.

After this, we discuss parameterized algorithms for semi-local string comparison in

Chapter 5. We show how traditional parameterized algorithms for the LCS problem

can be derived using semi-local string comparison, and we show how algorithms

for semi-local string comparison can be parameterized, allowing speedup for very

similar or very dissimilar input strings. Finally, in Chapter 6, we show a practi-

cal application of our semi-local string comparison algorithms: we implement a very

sensitive method for local comparison of two strings. This method has been success-

fully applied in a biological application by Ott et al. [2009]. Our implementation is

now used to provide a web service for evolutionary sequence comparison (Picot et al.

[2010b]). We conclude in Chapter 7 by summarizing the results from this thesis and

highlighting some directions of future work. The appendix contains a more detailed

4

description of the algorithm engineering work in this thesis. Appendix A describes

a highly optimized parallel vector library for integer vector computations, which has

been used to implement and speed up various string algorithms. Appendix B de-

scribes our approach to portable coarse-grained parallel programming. Appendix C

contains a description of the programs for biological sequence comparison.

5

Chapter 2

Engineering Parallel Algorithms

In this chapter, we introduce various existing models of parallel com-

putation, and describe the model we will use to study parallel algorithms

in this thesis. We adapt the standard bulk-synchronous parallel (BSP)

model of computation to include elements of word-parallel computation,

as well as from external memory algorithms. Based on this model, we

define the concepts of work-optimality, scalable communication and scal-

able memory, and explain how these concepts relate to practical scala-

bility on modern parallel computers.

2.1 Models of parallel computation

String comparison algorithms can benefit naturally from using parallel computation

since their practical applications typically require large input strings to be pro-

cessed. Furthermore, recent developments in the design of computers include both

the potential and the need for parallelism in algorithms: multi-core CPU’s, SIMD

instruction sets, and highly-parallel graphics processors are commonly available in

almost every desktop computer. In new processor designs, the traditional increase

in processor clock speed has largely been replaced by an increase of the number of

parallel execution units which are available to the programmer. Exploiting paral-

lelism is becoming the only way to truly benefit from these developments and gain

6

performance by using new processor architectures. In algorithm design, this poses

two questions: how well the traditional models of parallel programming are suited

to new parallel computers, and which problems require new parallel algorithms. In

this chapter, we relate the main classical models of parallel computation to recent

developments in parallel computers and highlight the aspects in parallel algorithms

which we look at in this work. We then give a brief overview of modern tools for

implementing such algorithms. For a more detailed technical discussion, the reader

may refer to Appendices A and B, as well as the related program source codes.

A multitude of theoretical models and paradigms for parallel computation

have been proposed to close the gap between algorithmic results and real parallel

computers. Most common are variants of the PRAM model (see e.g. Fortune and

Wyllie [1978]; JáJá [1992]). While the PRAM model allows studying the complexity

of a problem in an idealised parallel environment, it does not capture many practical

aspects of parallel programming, such as the fact that communication between pro-

cessors can be more expensive than sequential computation. Despite this limitation,

the model is useful for studying the degree of parallelism that can be achieved for a

given problem. Moreover, on a small scale, it has been shown possible to simulate

PRAM-type computations in practice (Wen and Vishkin [2008]; Paul et al. [2002]).

To account for communication cost and data locality in algorithm design,

models such as BSP (Valiant [1990]) and a number of shared memory parallel mod-

els (Ramachandran [1997]; Tiskin [1998]) have been proposed. The key idea of most

of these models is to separate communication from computation and account for

the costs separately. Depending on the specific design of a parallel machine, com-

munication cost can then be modelled accurately using a purpose-designed model

(Juurlink and Wijshoff [1996]; Blelloch et al. [1997]), since the linear approximation

for communication performance given by the standard BSP model does not give ac-

curate performance predictions when comparing to practical results in many cases

(Hill et al. [1998]; Krusche [2005]). However, we would like to point out that a good

model for algorithm design does not necessarily have to come equipped with an

accurate method of predicting performance on any parallel machine. Our approach

7

Level 0

M

M M

M M M M M M M M
Level 1

Level 2

Level 3

p p p p p p p p

Figure 2.1: A processor-memory hierarchy that can be modelled by Multi-BSP

here is to capture the cost of communication separately, allowing us to predict per-

formance using a more elaborate model if necessary, but mainly focusing our study

on how the amount of communication can be decreased asymptotically.

More recent models have described hierarchical parallel computers (de la

Torre and Kruskal [1996]), and the concept of network-obliviousness (Bilardi et al.

[2007]), which is similar to the cache-oblivious sequential algorithms introduced by

Frigo et al. [1999]. This type of model focuses on the question of how well a prob-

lem can be decomposed recursively and run on a parallel computer with a hierarchy

of caches or buffers. For recent multi-core architectures, similar work has focused

on modelling cache performance and deriving generic ways to obtain cache efficient

algorithms (Blelloch et al. [2008]) on multi-core processors. Valiant [2008] recently

defined an extension of BSP named Multi-BSP to serve as a computational model

of multi-core and SMP processors with a cache/memory hierarchy. This last con-

tribution is particularly interesting for the theoretical study of parallel algorithms,

since it includes a detailed discussion of optimality and scalability both for work and

communication. Furthermore, the model describes both fine-grained PRAM-style

parallelism, and coarse-grained parallelism on a hierarchical parallel machine (see

Figure 2.1 for an example of a processor-memory hierarchy that can be modelled by

the Multi-BSP model).

8

Another traditional approach to modelling data-parallel computations is vec-

tor parallelism. Efficient implementation of vector-parallel algorithms using multiple

cores is usually straightforward. Moreover, many modern multi-core processors are

capable of executing SIMD vector instructions independently on each core. Specify-

ing vector parallelism explicitly is advantageous because it provides a simple mech-

anism for speeding up the “bottom level” of a parallel computation, and allows one

to make use of automatic vectorisation features in compilers more easily. A sim-

ple approach to modelling vector parallelism is extending the standard RAM model

(Aho et al. [1974]) by adding bit shift and bitwise Boolean instructions, and allowing

one to store arbitrarily large numbers in memory cells (Pratt et al. [1974]; Boasson

et al. [2001]). Other approaches for the theoretical modelling of vector parallelism

which also account for the length of the individual vectors are studied extensively

by Blelloch [1990].

2.2 The BSP model and its variants

The BSP model introduced by Valiant [1990] describes a parallel computer with

three parameters (p, g, l). The performance of the communication network is char-

acterized by a linear approximation, using parameters g and l. Parameter g, the

communication gap, describes how fast data can be transmitted continuously by the

network (in relation to the computation speed of the individual processors) after

a data transfer has started. The communication latency l represents the overhead

that is necessary for starting up communication. A BSP computation is divided

into supersteps, each consisting of SPMD-style local computations and a communi-

cation phase. At the end of each superstep, the processes are synchronized using a

barrier-style synchronization. Consider a computation consisting of S supersteps.

For each specific superstep s with 1 ≤ s ≤ S and each processor q with 1 ≤ q ≤ p,

let hins,q be the maximum number of data units received and houts,q the maximum num-

ber of data units sent in the communication phase on processor q. Further, let ws

be the maximum number of operations in the local computation phase. The whole

9

computation has separate computation cost

W =
S∑

s=1

ws (2.1)

and communication cost

H =
S∑

s=1

hs with hs = max1≤q≤p(hins,q + houts,q). (2.2)

The total running time is given by the sum

T =

S∑

s=1

Ts = W + g ·H + l · S. (2.3)

Some variations of the BSP model consider a more detailed model of the communi-

cation for the individual supersteps (see e.g. Juurlink and Wijshoff [1996]; Blelloch

et al. [2008]), which allows one to obtain more accurate runtime predictions. How-

ever, at the same time, the models become more specific to the parallel machine

the algorithms are run on. The BSPRAM model (Tiskin [1998]) accounts for in-

put/output costs by including an external memory which can be accessed through

the communication network. Multi-BSP (Valiant [2008]) is the most recent variant

of BSP. In Multi-BSP, a hierarchy of nodes compute and communicate in BSP style.

Multi-BSP is an approach to model the time for splitting and communicating input

data until it reaches the leaf nodes of the hierarchy (where the actual computation

is performed) and then combining and outputting the results. Intuitively, a Multi-

BSP algorithm is efficient if this time does not dominate the running time of the

computation that is carried out.

2.3 Our model

Based on the models discussed in the previous sections, we study parallel algorithms

using a BSP-like approach, combined with a simple model for vector-parallelism

based on the MPRAM (Boasson et al. [2001]). This approach is slightly different

10

M tc1

cp

c2

m m m m

v v v v

c1 c2 cpc3

(b) BSP-style code execution(a) BSP computer with external
memory and vector units

Figure 2.2: Extended BSPRAM model

from previous work in two aspects. Firstly, we do not attempt to model performance

directly. Our model initially does not consider constants to describe the speed of

the communication network, latencies or CPU clock frequencies. Our approach is

to analyze computation and communication cost separately, and to propose three

simple algorithmic properties which ensure asymptotic scalability on hierarchical

systems. Furthermore, we attempt to separate “simple” parallelism from algorithmic

parallelism which requires more detailed analysis. Finally, our model includes an

input/output complexity analysis, i.e. we account for the fact that data may not

be distributed to all processors before the computation. We achieve this using a

modified version of the BSPRAM (see Tiskin [1998]), which we extend by allowing

the use of vector parallelism on each single processor. We will also refer to our model

as a BSP computer with external memory. We specify criteria for algorithms which

allow their efficient simulation on more complex hierarchical models like Multi-BSP

(see Valiant [2008]).

We assume that the computation is carried out on a parallel computer with

p identical processors, each of which can execute vector instructions. The parallel

computation proceeds in supersteps like in the BSP model, i.e. each processor can

only access a local subset of data within a single superstep, and data is exchanged

between processors at the superstep boundary. In each superstep, we look at the

local computation as the maximum running time per processor, and communication

as the maximum amount of data that is read or written by a single processor (see

Figure 2.2).

11

The vector capabilities of each processor are modelled independently. We

assume that each processor can perform element-wise arithmetic operations and

element-wise comparison on vectors of v elements in a single step, where v ≥ 1

is a constant integer. When considering integer vector computations, we specify

the number of bits necessary to store a vector element. For example, when using

instructions from the Intel MMX instruction set, see Intel Corporation [1999a],

v can be chosen from 2, 4, or 8, restricting the vector elements to 32, 16, or 8

bits respectively. We also note that bit parallelism (see e.g. Powell et al. [2000];

Crochemore et al. [2001]; Hyyrö et al. [2004]) can be modelled by restricting the bit

length of each vector element to 1.

To characterize the costs of a computation, we consider the sequential run-

ning time W(n) and the required memoryM(n) as functions of the problem size n.

Further, let I(n) be the maximum of the input and the output size of the problem.

E.g. for standard (non-Strassen [1969]) n×n matrix multiplication, we have problem

size n, running timeW(n) = O(n3), I(n) = O(n2), and furtherM(n) = O(n2). For

a given problem of size n, it is reasonable to take a sequential algorithm running in

time W(n) as our reference algorithm if a lower bound of Ω(W(n)) on the running

time exists. However, lower bounds, if known, are usually tied to a specific theoreti-

cal model of computation which might not correspond completely to the model used

for specifying the parallel algorithm. Therefore, we can also consider work optimal-

ity in relation to the best known (or most practical), but not necessarily optimal

algorithm. We study the following desirable properties in parallel algorithms.

Definition 2.3.1 (Work-optimality). The overall computation time W (n, p) on p

processors is the sum of the maximum local computation time over all supersteps.

We say that an algorithm is asymptotically work-optimal if W (n, p) = O(W(n)
p).

Example 2.3.2. A parallel matrix multiplication algorithm with running time

W (n, p) = O(n
3

p) is work optimal w.r.t. the standard O(n3) sequential method.

However, it is not work-optimal in an absolute sense, since subcubic algorithms ex-

ist (for matrices over a ring, see Strassen [1969]; Coppersmith and Winograd [1990]).

12

Definition 2.3.3 (Scalable communication). The overall communication cost

H(n, p) is the sum over the communication in all supersteps. An algorithm achieves

asymptotically scalable communication if

H(n, p) = O

(I(n)

pc

)
, where c > 0 is a constant. (2.4)

In the context of multi-core CPUs, scalable communication can be a simple model

for sharing memory bus bandwidth.

Definition 2.3.4 (Scalable memory). The memory cost M(n, p) is the maximum

amount of local storage required by a processor across all supersteps. Assume the

sequential reference algorithm requires space M(n). An algorithm achieves asymp-

totically scalable memory if

M(n, p) = O

(M(n)

pc

)
, where c > 0 is a constant. (2.5)

Achieving scalable memory is important for algorithms running on multi-

core CPUs: it allows one to choose subproblem sizes to fit subproblems into different

levels of the CPU cache by recursive partitioning. In practice, programming libraries

such as the Intel Threading Building Blocks (TBB) library include functionality to

help the implementation of such a partitioning automatically if the algorithm allows

it.1

Definition 2.3.5 (Synchronization efficiency). An algorithm is synchronization-

efficient if the total number of supersteps S(p) is not a function of the problem

size n.

Finally, each parallel algorithm can have slackness conditions, which are

requirements on the relation between n and p to achieve the scalability criteria

1TBB partitions problems into subproblems based on ranges of numbers. Given a range of values
for which a computation has to be carried out, TBB can be instructed to execute independent
computations for subranges in parallel, and to map these to the correct processor cores in order
to allow the best re-use of cached information. This is discussed e.g. in the TBB reference manual
(Intel Corporation [2010a]) in Sections 3.1 to 3.3 (Splittable Concept, Range Concept, Partitioners).

13

shown above. A simple example for such a slackness condition is given by BSP

parallel prefix computation (see Bisseling [2004]).

Example 2.3.6. Given n values x1, x2, . . . , xn and an associative operator ⊕, we

would like to compute the values x1, x1⊕x2, x1⊕x2⊕x3, . . . ,
⊕

i=1,2,...,n xi. There

is a BSP algorithm for this problem which uses W (n, p) = O(np), H(n, p) = O(p),

M(n, p) = O(np) and S = O(1) if n ≥ p2. The slackness condition of requiring

n ≥ p2 is necessary for the algorithm to be work-optimal. Without requiring n ≥ p2,

the communication time can become the dominant part of the computation. For

example, if we had p = n, we get H(n, p) = O(n), i.e. the time for communication

would be asymptotically the same as the running time of the sequential algorithm.

In contrast to more complex models, our approach to designing parallel al-

gorithms seems simplistic: no modelling of a cache/memory hierarchy is present.

However, applying extensions for BSP to include more detailed modelling of memory

access or communication is still possible in our model. Furthermore, computations

which achieve scalable memory and scalable communication can be broken down re-

cursively, allowing one to study their performance in more detail using a multi-level

cache hierarchy model. On a high level, memory and communication scalability

of an algorithm indicate the level of a cache hierarchy the algorithm will be able

to utilize efficiently, and therefore estimate the effective communication parameters

for the BSP model. Moreover, our model includes a separate measure for the “flat”

parallelism contained in an algorithm in the form of bottom-level vector parallelism.

We chose vector parallelism as a bottom level for our model since this is well suited

to string algorithms. In other applications however, it might be more interesting to

“plug-in” a v-processor PRAM at each bottom level node, as in a 2-level Multi-BSP

computer, or to use a more complex model altogether. While this does not affect

the validity of results for scalable memory and communication, more efficient par-

allel algorithms for future processor architectures may be modelled this way. For

example, a “PRAM on a chip” prototype architecture has been proposed by Wen

and Vishkin [2008]. For current architectures however, we will consider algorithms

using the simpler model described earlier.

14

2.4 Implementing parallel algorithms

So far in this chapter, we have concentrated on theoretical modelling of parallel

algorithms, neglecting the important question of how well this type of modelling

corresponds with current approaches to parallel programming and hardware imple-

mentation. We restrict our attention to implementing parallel algorithms using the

C++ programming language (Stroustrup [1987]). The choice of this language is

based on the good performance of C++ code (see Fulgham [2010] for a performance

comparison between different programming languages), and the availability of many

algorithmic libraries.

We consider two types of parallel computer in this thesis. First, we look at

clusters consisting of multiple multi-core processors, since this is the most common

kind of parallel computer which is available at reasonable cost. The most common

way of programming these systems is to use MPI (Snir et al. [1995]) in combination

with a multi-threading library like OpenMP (Quinn [2003]). This approach offers

good control over the exact computation and communication pattern that is imple-

mented. However, it also requires a lot of effort to obtain working code – parallelism

on processors and processor cores needs to be specified more or less explicitly by

the programmer. Furthermore, MPI allows implementing the same communication

patterns in multiple different ways, therefore, code optimized for one parallel ma-

chine might require additional effort to be equally efficient on a different system. To

address this issue, various “higher-level” parallel programming libraries have been

proposed. For programming multi-core processors and SMP systems, the STAPL li-

brary (Rauchwerger et al. [2001]) provides multi-threaded versions of C++ standard

algorithms for sorting, searching, and list or vector operations. Another approach is

taken by Intel’s Threading Building Blocks (TBB) library (Intel Corporation [2009]).

In TBB, the programmer specifies parallelism by a mostly task-parallel program-

ming interface; communication is implemented by shared memory access. Both

these libraries include functionality to retain the simple superstep structure of al-

gorithms and adapt to different numbers of processors that are physically available.

STAPL achieves this by providing parallel versions of the C++ Standard Template

15

Library functions to work on large datasets. In our model, each application of such

a parallel function is equivalent to executing a sequence of supersteps. Similarly,

TBB includes functions for executing parallel loops and parallel prefix operations in

a single superstep. Another approach to high-level multi-core programming is taken

by Cilk++ (Leiserson [2009]), which introduces additional constructs into the C++

language to implement recursive work splitting. A Cilk program starts out running

in a single thread until it recursively creates new tasks. These tasks are scheduled

to run in parallel threads, potentially using all the processors that are physically

available. TBB implements similar functionality on a library level (as opposed to

compiler level for Cilk++).

In Appendix B, we show how to use an MPI-based implementation of the

BSPlib standard (Hill et al. [1998]; Suijlen and Bisseling [2010]) together with the

TBB library to create portable C++ code which can run on cluster systems as well

as multi-core desktop computers. For vector programming, we use a custom imple-

mentation of a vector programming library similar to Intel’s Performance Primitives

(IPP, see Intel Corporation [2010b]) or AMD’s Framewave (The Framewave Group

[2009]). This library is described in Appendix A. Appendix C describes our imple-

mentation of various algorithms from this thesis, based both on BSP and vector

programming. Apart from being useful for a practical application, this algorithm

engineering project demonstrates that our approach to algorithm design is practical,

and can benefit from recent advances in parallel library and compiler design.

16

Chapter 3

An Introduction to Semi-local

String Comparison

In this chapter, we will give an introduction to semi-local string com-

parison and its applications. In semi-local string comparison, we com-

pare one string to all substrings of another string using an edit distance,

or using an alignment score. Semi-local string comparison is a standard

technique for computing string alignments in parallel, as well as for vari-

ous types of incremental string comparison. This chapter will present the

theoretical foundations for understanding the new algorithms presented

in the following chapters.

3.1 Overview

In this chapter, we will give an introduction to semi-local string comparison and its

applications. In semi-local string comparison, we compare one string to all substrings

of another string using an edit distance (Levenshtein [1966]; Wagner and Fischer

[1974]), or using an alignment score (Gusfield [1997]). The result of semi-local

string comparison is a highest-score matrix which contains a score for each string-

substring pair. Such highest-score matrices have monotonicity properties which can

be exploited to obtain efficient algorithms for semi-local string comparison.

17

We first give a few definitions on integers, permutations, and we define Monge

matrices (see Burkard et al. [1996]), which form the basis of the techniques and al-

gorithms shown in this thesis. We also give basic definitions for string comparison,

and show how Monge matrices are related to computing string edit distances. A

large part of this chapter is taken up by the description of the “seaweed algorithm”

by Tiskin [2008a], which is the basic dynamic programming algorithm we use for

computing highest-score matrices. The notation used in this thesis is mostly con-

sistent with the work by Tiskin [2010a].

3.2 Integers, matrices and permutations

We denote the interval of integers {i, i+ 1, . . . , j} by [i : j]. We further denote the

interval of odd half-integers {i + 1
2 , i + 3

2 , . . . , j − 1
2} by 〈i : j〉. Odd half-integers

give a convenient notation for looking at exactly one point between two adjacent

integers. We mark odd half-integer variables by a ‘ˆ’ symbol. We can also consider

infinite intervals like 〈−∞ : n〉, or [−∞ :∞].

We can index matrices by Cartesian products of integer or odd-half integer

intervals. When indexing a matrix M by odd half-integer values ı̂ and ̂, we define

that

M (̂ı, ̂) = M(i, j) with i = ı̂− 1/2 and j = ̂− 1/2. (3.1)

Therefore, if a matrix has integer indices [0 : m−1]×[0 : n−1], it has odd half-integer

indices 〈0 : m〉 × 〈0 : n〉.1

We look at permutations (see Sagan [2010] for an introduction to permuta-

tions and related algorithms) and their corresponding permutation matrices. We

will define a permutation π of size n as a sequence of integers π = (π(1), . . . , π(n)),

where π(1), . . . , π(n) ∈ [1 : n], and π(i) 6= π(j) if i 6= j. The permutation matrix Pπ

1This translation between indices is only necessary for implementing algorithms on matrices
with half-integer indices. We will use the same indexing consistently for the same types of matrices
in the algorithm descriptions.

18

corresponding to π has elements Pπ(i, j) with

Pπ(i, j) =

1 if π(i) = j

0 otherwise.

(3.2)

The set of index pairs {(i, j) ||| Pπ(i, j) = 1} will be referred to as the nonzeros of

Pπ. The composition of two permutations π3 = π1 ◦ π2 is computed as π3(j) =

π2(π1(j)). Composition of two permutations is equivalent to multiplication of their

corresponding permutation matrices, i.e. we have π3 = π1 ◦ π2 ⇔ Pπ3 = Pπ2Pπ1 .

The identity permutation in of size n is defined as in(j) = j for j ∈ [1 : n]. The

permutation matrix corresponding to in is an n × n identity matrix. Every n-

permutation π has an inverse permutation π̄ with π(π̄(j)) = j and thus π ◦ π̄ = in.

For each permutation π, we can study the set of its inversions, which is defined as

I(π) = {(π(i), π(j)) ||| i < j and π(i) > π(j)}. (3.3)

Informally, the set of inversions lists all pairs of elements of the permutation which

are out of the sorted order. The set of inversions for a permutation can be computed

using a variation of Mergesort. Faster algorithms are discussed e.g. by Chan and

Pǎtraşcu [2010].

3.3 Monge matrices

We will work with implicit representations of certain types of matrices, which store

the differences between matrix elements rather than the elements themselves. We

define distribution matrices and density matrices as follows.

Definition 3.3.1. The elements of the distribution matrix DΣ of a matrix D with

indices from 〈0 : m〉 × 〈0 : n〉 are defined as

DΣ(i, j) =
∑

D(̂ı, ̂) with (̂ı, ̂) ∈ 〈i : m〉 × 〈0 : j〉, (3.4)

19

DΣ =

0 1 2 3 4 5 6
0 0 1 2 3 4 5
0 0 1 2 2 3 4
0 0 1 2 2 3 3
0 0 0 1 1 2 2
0 0 0 1 1 1 1
0 0 0 0 0 0 0

D =

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0

Figure 3.1: Example: density and distribution matrices

where (i, j) ∈ [0 : m]× [0 : n].

Definition 3.3.2. The elements of the density matrix D� of a matrix D with indices

(i, j) from [0 : m]× [0 : n] are defined as

D�(̂ı, ̂) = D

(
ı̂+

1

2
, ̂− 1

2

)
−D

(
ı̂− 1

2
, ̂− 1

2

)
−

D

(
ı̂+

1

2
, ̂+

1

2

)
+D

(
ı̂− 1

2
, ̂+

1

2

)
, (3.5)

having (̂ı, ̂) ∈ 〈0 : m〉 × 〈0 : n〉.

Definition 3.3.3. A matrix A is called simple, if (A�)Σ = A.

A specific type of matrices that are useful for our applications are Monge

matrices (see Burkard et al. [1996] for a survey on Monge matrices and their appli-

cations).

Definition 3.3.4. A matrix A is called a Monge matrix, if

A(i, j) +A(i′, j′) ≤ A(i, j′) +A(i′, j) for all i ≤ i′, j ≤ j′.

We notice that a matrix A is Monge if and only if its density matrix A� is

nonnegative (as discussed e.g. by Tiskin [2010a]). Therefore, distribution matrices

of permutation matrices are Monge.

Definition 3.3.5. The distribution matrix PΣ of a permutation matrix P is called

a simple unit-Monge matrix.

20

Elements of a simple unit-Monge matrix can be stored and queried efficiently

using an implicit representation (see Tiskin [2008a]). When looking at the nonze-

ros of P as points in the plane, querying distribution matrix elements reduces to

orthogonal range counting, which is a common problem in computational geometry.

Therefore, efficient data structures for orthogonal range counting can be used to

store PΣ space-efficiently using the nonzeros of P . The easiest way to implement

this is to use a range tree (see Bentley [1980]) to achieve storage space O(n log n),

construction time O(n log n), and query time O(log2 n) (or O(log n) using storage

space that is higher by a constant factor, see de Berg et al. [2008]). More efficient

data structures exist for range searching in computation models different from the

standard RAM model (see Aho et al. [1974]). Some examples of such data structures

are given by Alstrup et al. [2000], JáJá et al. [2004], and Chan and Pǎtraşcu [2010].

If we do not require random access to all matrix elements, the following observa-

tion can be used to implement incremental queries to implicit simple unit-Monge

matrices.

Theorem 3.3.6 (Tiskin [2010a], p. 11, Theorem 2). Let P be a permutation matrix.

If we are given a value PΣ(i, j) for fixed i and j, and the locations of the nonzeros

in P , we can compute all four values PΣ(i±1, j±1) (where they exist) in time O(s)

where s is the time needed to retrieve the location of the nonzero in a specific row

or column.

An important problem for Monge matrices is their multiplication in the

(min,+) semiring. We will define this problem here and show how it can be applied

to efficient semi-local string comparison.

We consider the product MC = MA �MB of two N ×N matrices with

MC(i, k) = min
j

(MA(i, j) +MB(j, k)) where i, j, k ∈ [1 : N]. (3.6)

This product can be treated like a generic matrix product, and we can obtain a sim-

ple O(n3) solution for it. Slightly subcubic algorithms for generic matrix products

have been shown by Chan [2008]. Furthermore, Duan and Pettie [2009] discuss how

21

to compute certain specific matrix products faster for real-valued matrices, including

our (min,+)-products, which they refer to as dominance-products.

Lemma 3.3.7. The (min,+) product of two unit-Monge matrices is also a unit-

Monge matrix.

Proof. See [Tiskin, 2010a, Chapter 2, Theorem 3].

If MA and MB are Monge matrices of size n×n, we can achieve running time

O(n2) using the efficient algorithm for computing row-maxima in Monge matrices

by Aggarwal et al. [1987]. This algorithm, and other methods of matrix distance

multiplication are discussed in [Tiskin, 2010a, Chapter 2]. For simple unit-Monge

matrices, we can improve further on O(n2) by using their density matrices as an

implicit representation. One such algorithm was given by Tiskin [2008a], it takes

O(n) nonzeros of two density permutation matrices PA and PB as its input, and

computes the implicit product PC such that PΣ
C = PΣ

A � PΣ
B in time O(n1.5). This

result was improved to O(n log n) running time by Tiskin [2010b]. It is an open prob-

lem whether it is possible to multiply implicit simple unit-Monge matrices faster,

Landau [2006] conjectured that this can be done in linear time. In this thesis, we

will describe two algorithms for simple unit-Monge matrix multiplication. We will

reproduce the algorithms from [Tiskin, 2008a], as well as from [Tiskin, 2010b] in

Chapter 4, and obtain parallel algorithms based on them.

3.4 Longest common subsequences

Let x = x1x2 . . . xm and y = y1y2 . . . yn be two strings over an alphabet Σ of size σ.

We distinguish between contiguous substrings of a string x, which can be obtained

by removing zero or more characters from the beginning and/or the end of x, and

subsequences, which can be obtained by deleting zero or more characters in any

position. The longest common subsequence (LCS) of two strings is the longest string

that is a subsequence of both input strings; its length (the LLCS) is a measure for the

similarity of the two strings. Substrings of length w are called w-windows. For given

22

x, y and w, the length of the LCS of two w-windows xi . . . xi+w−1 and yj . . . yj+w−1

will be denoted as WLCS (i, j). We will denote the reversal xmxm−1 . . . x1 of string

x as x̄.

a b c a

a

c

b

c

yx

Figure 3.2: Example: extended alignment dag

Definition 3.4.1. Let the alignment dag (directed acyclic graph) Gx,y for two strings

x and y be defined by a set of vertices vs,t with s ∈ [0 : m] and t ∈ [0 : n], and edges

as follows. We have horizontal and vertical edges vs,t−1 → vs,t and vs−1,t → vs,t of

score 0. Further, we introduce diagonal edges vs−1,t−1 → vs,t of score 1, which are

present only if xs = yt.

Longest common subsequences of x and y correspond to highest-scoring paths

in this graph from v0,0 to vm,n. We will denote by ∗y∗ the string y, padded at the left

and right with infinitely many special wildcard characters, each of which matches

all other characters in the alphabet. We call the infinite alignment dag Gx,∗y∗ the

extended alignment dag for x and y (see Figure 3.2).

When drawing the (extended) alignment dag in the plane, its horizontal and

vertical edges partition the plane into square cells each of which, depending on the

input strings, may contain a diagonal edge of score 1 or not.

Definition 3.4.2. For every pair of characters xs and yt, we define a corresponding

cell (s − 1
2 , t − 1

2). Cells corresponding to a matching pair of characters are called

match cells, and cells corresponding to mismatching characters are called mismatch

cells.

23

3.5 Semi-local string comparison and the seaweed algo-

rithm

An interesting extension to computing longest common subsequences is semi-local

string comparison. In this problem, we are interested in computing longest common

subsequence lengths for one string and all substrings of the other string. In the align-

ment dag representation, this problem corresponds to computing all highest-scoring

paths starting and ending at the graph boundary. Schmidt [1998] proposed an al-

gorithm for computing all such highest-scoring paths in grid dags. This algorithm

was applied to string-substring longest common subsequence (LCS) computation by

Alves et al. [2008], who gave an O(n2) algorithm for semi-local comparison of two

strings of length n. Tiskin [2008a] developed further understanding of the algorithm

and its data structures, obtaining a subquadratic time algorithm for semi-local string

comparison including string-substring and prefix-suffix LCS computation. Semi-

local string comparison is useful as an intermediate step towards fully-local string

comparison, in which all pairs of substrings of the input strings are compared. A

straightforward application is computing the LCS efficiently in a sliding window. A

simpler variant of this problem was studied by Boasson et al. [2001], they give an

algorithm to count the number of fixed size windows of a long text string which

contain a short pattern string as a subsequence. Semi-local string comparison is

also a useful tool for obtaining efficient parallel algorithms for LCS computation

(see Apostolico et al. [1990]; Alves et al. [2006]; Krusche and Tiskin [2007], as well

as Chapter 4 of this thesis). A summary of other algorithmic applications is given

by Tiskin [2008b].

We now define the semi-local string comparison problem. Solutions to the

semi-local LCS problem are given by a highest-score matrix.

Definition 3.5.1. In a highest-score matrix Ax,∗y∗, each entry Ax,∗y∗(i, j) is defined

as the length of the highest-scoring path in Gx,∗y∗ from v0,i−1 to vm,j .

Each entry Ax,∗y∗(i, j) with 0 < i ≤ j < n gives the LLCS of x and substring

yi . . . yj . In a similar way, we can obtain the LLCS of all prefixes x1x2 . . . xi and

24

Condition LCS

0 < i ≤ j < n String-substring:
Ax,∗y∗(i, j) = LLCS (x, yi . . . yj)

−m < i ≤ 0 and Suffix-prefix:
0 < j < n Ax,∗y∗(i, j) = LLCS (x1−i . . . xm, y1 . . . yj)− i

0 ≤ i < n and Prefix-suffix:
n ≤ j < m+ n Ax,∗y∗(i, j) = LLCS (x1 . . . xm+n−j , yi+1 . . . yn) +m+ n− j
−m < i ≤ 0 and Substring-string:
n ≤ j < m+ n Ax,∗y∗(i, j) = LLCS (x1−i . . . xm+n−j , y)− i+m+ n− j

otherwise: Ax,∗y∗(i, j) = min(m,n, j − i)

Table 3.1: LCS lengths given by a highest-score matrix

y, as well as all suffixes yj . . . yn and x, or also the LLCS of all suffixes xi . . . xm

and all prefixes y1 . . . yj from Ax,∗y∗ (see Table 3.1). Since the values of Ax,∗y∗(i, j)

for different i and j are strongly correlated, it is possible to derive an implicit,

space-efficient representation of matrix Ax,∗y∗(i, j).

Theorem 3.5.2. Consider a highest-score matrix A. There exists a permutation

matrix PA, for which

A(i, j) = j − i− PΣ
A (i, j).

PΣ
A is simple unit-Monge (see Definition 3.3.5).

Proof. See [Tiskin, 2010a, Chapter 3, Theorem 9].

Corollary 3.5.3. A highest-score matrix A can be represented implicitly using only

O(m+ n) space.

Proof. Note that infinitely many nonzeros exist in the implicit highest-score matrix

for any extended alignment dag. However, due to the structure of the extended

alignment dag, only a core ofm+n nonzeros need to be stored. Each of the remaining

off-core nonzeros can be computed in constant time. The relations between paths

through the core of the alignment dag and LCS lengths of substrings of the two

input strings are given by Table 3.1.

25

Definition 3.5.4. Given the sequence {(̂0, ̂k) : k ∈ [1 : m]} where (̂0, ̂k)

is a nonzero in the implicit highest-score matrix of x1 . . . xk and y, a seaweed

is obtained by connecting the sequence of points {(0, ̂0), (1, ̂1), (2, ̂2), . . . , (m −
1, ̂m−1), (m, ̂m)}.

The horizontal start and end coordinates ̂0 and ̂m of each seaweed specify

the location of a nonzero in PAx,y .

Implicit highest-score matrices can be obtained using the seaweed algorithm,

which uses dynamic programming on all prefixes of the input strings. This method

is graphically illustrated by tracing the seaweeds defined above. We draw seaweeds

as curves through the alignment dag cells, starting at an odd half-integer position

ı̂ on the top of the alignment dag, and ending at position ̂ on the bottom of the

alignment dag. Therefore, the curves start between two adjacent vertices v0,̂ı− 1
2

and v0,̂ı+ 1
2
, and end between vm,̂− 1

2
and vm,̂+ 1

2
. The paths of the seaweeds are

computed using the following set of rules.

• Two seaweeds enter every cell in the extended alignment dag, one at the left

and one at the top.

• The seaweeds proceed through the cell either downwards or rightwards.

• In the cell, the directions of these seaweeds are interchanged either if there is

a match, or if the same pair of seaweeds have already crossed.

• Otherwise, their directions remain unchanged and the seaweeds cross.

Algorithm 1 shows the complete method using pseudocode. The figure on the right

hand side illustrates the seaweed behaviour when passing through a cell.

The procedure for querying LCS lengths from implicit highest-score matrices

can be implemented by using queries as described in Section 3.3 to compute PΣ
A from

PA. A graphical interpretation based on seaweeds is shown in Figure 3.3. The LLCS

of x and a substring yi . . . yj is determined by the number of seaweeds which start

and end within the area of the alignment dag induced by x and yi . . . yj . Following

26

Algorithm 1 The Seaweed Algorithm

input: Strings x and y
output: The implicit highest-score matrix PAx,y

set J [̂ı] = ı̂ for i ∈ 〈0,m+ n〉
for r = 1, 2, . . . ,m

l← −r + 1
2

for c = 1, 2, . . . , n

t← J [c− 1
2]

if xr = yc or l > t
Swap l and t

J [c− 1
2]← t

J [m+ n+ r − 1
2]← t

PA(̂ı, ̂) =

{
1 if ı̂ = J [̂]

0 otherwise.

return PAx,y

t

l ?

t

l
l

t

t

l l
t

if l < t

t

l
l

t

if l > t

a b c a

a

c

b

c

a b c a

Figure 3.3: Querying LCS scores by seaweeds

the formula given in Theorem 3.5.3, we have to subtract the number of such top-to-

bottom seaweeds from the length of the substring yi . . . yj to obtain the LLCS:

LLCS(x, yi . . . yj) = j − i− [number of seaweeds with both their

horizontal start and end coordinates in 〈i : j〉].

27

a b c a

a

c

b

c 1

2

3

4

5 6 7 8

1 2 3 4

5

6

7

8

12 34 567 8

1 2 3 4 5 6 7 8

a b c a

a

c

b

c 1

2

3

4

5 6 7 8

1 2 3 4

5

6

7

8

(a) Seaweeds

π = (3, 2, 6, 1, 7, 5, 4, 8)

(b) Seaweed braid and permutation (c) Implicit highest-score matrix

P =

0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

Figure 3.4: Seaweeds, seaweed braid, seaweed permutation and implicit highest-
score matrix

3.6 Seaweeds as permutations

Consider an alignment dag for strings of lengths m and n. The seaweed start and

end points can be represented by a permutation of size m+ n.

Definition 3.6.1. Let PA be the implicit highest-score matrix corresponding to

strings x and y of lengths m and n. The seaweed permutation πA for a highest-score

matrix A is the (m+n)-sized permutation πA[̂+ 1
2] = k̂+ 1

2 , with PA(k̂−m, ̂) = 1,

k̂, ̂ ∈ 〈0 : m+ n〉.

When drawing the seaweeds without the constraints of the cells in the align-

ment dag and “straightening” them a little, we obtain seaweed braids, which were

formalized algebraically by Tiskin [2010b]. The seaweed braids provide a useful in-

termediate step between storing the full set of seaweed crossings or double crossings,

and only storing their permutation: the braid still includes the information on the

order in which the seaweeds have crossed. Consider the seaweeds corresponding to

a run of the seaweed algorithm on strings x and y. We can obtain the seaweed braid

corresponding to these seaweeds by looking at the seaweeds as “rubber strings”. We

remove the constraints by the alignment dag grid, and straighten the seaweeds a

little, preserving their crossings. We are now left with the seaweed braid, which

contains the information on the order in which seaweeds cross. This order can be

modified to some extent without violating the seaweed properties according to the

28

a b c a

a

c

b

c

x

y

z

a b c a

Figure 3.5: Highest-score matrix composition by seaweeds

algebraic rules given by the formal definition of the seaweed monoid (see [Tiskin,

2010a, Section 2.2]). We will not use the algebraic approach to seaweeds in this

thesis except when drawing figures to illustrate seaweed behaviour. An example for

seaweeds, the corresponding braid, permutation and implicit highest-score matrix

is shown in Figure 3.4.

3.7 Highest-score matrix composition

In this section, we consider the composition of highest-score matrices for three strings

x, y, and z as follows. Given the highest-score matrices Ax,z and Ay,z, we would

like to compute Axy,z efficiently using the implicit representation of highest-score

matrices. We will now show how to reduce this problem to (min,+)-multiplication

of unit-Monge matrices. The (min,+) product of two implicit n × n unit-Monge

matrices can be computed in time O(n log n) using the divide-and-conquer algorithm

by Tiskin [2010b].

We start by considering runs of the seaweed algorithm on x and z, on y and

z, as well as xy and z. Figure 3.5 shows an example where x = ac, y = bc, and

z = abca. When concatenating the seaweeds for x and z with the seaweeds from

y and z, we get a subset of seaweeds which now double-cross in the bottom half of

the alignment dag. In Figure 3.5, the one double-crossing of this kind is marked

using a red dot. We first notice that not all pairs of seaweeds can double-cross.

29

(a) Trivial seaweeds (b) Non-trivial seaweeds

a b c a

a

c

b

c

x

y

z

a b c a

Figure 3.6: Trivial and nontrivial seaweeds in highest-score matrix composition

and

1 2 3 4 5 6 7 8

12 34 567 8

1 2 87 564 3

8

8

8

5

5

5

1 2

12

1 2

3

3

3

4

4

4

6

6

6

7

7

7

1 2 3 4 5 6 7 8

12 34 567 8

Figure 3.7: Highest-score matrix composition by seaweed braids

In particular, we can retain all seaweeds starting before −|x| at the top, and all

seaweeds that end between |z| and |z|+ |x| – these will be called trivial since they

cannot double cross. All remaining seaweeds can have double crossings which we

need to remove (see Figure 3.6). Removing the double-crossings in the non-trivial

part of the seaweeds is equivalent to computing an implicit (min,+)-product for two

|z|×|z| matrices. We can transform the problem to seaweed braids (see Figure 3.7).

30

Chapter 4

Parallel String Comparison

In this chapter, we show parallel algorithms for computing longest

common subsequences for two input strings, as well as longest increasing

subsequences for one input string. Our new algorithms achieve scalabil-

ity not only in work, but also in communication and memory. Fur-

thermore, we show the first parallel algorithms for computing longest

increasing subsequences which achieve general scalablility.

4.1 Background

In the standard BSP model, the LCS of two strings of length n can be computed in

O(n
2

p) computation time using p processors, O(n) communication and O(p) super-

steps using the standard dynamic programming algorithm by Wagner and Fischer

[1974] combined with the method for parallel grid dag dynamic programming by

McColl [1995] (see also Alves et al. [2003a]; Garcia and Semé [2006]). Semi-local

string comparison can be performed in the BSP model at no extra asymptotic cost

by combining the grid dag method with the seaweed algorithm. Alternative paral-

lel algorithms by Tiskin [2005, 2008a] compute LCS lengths using a sub-quadratic

algorithm for (min,+) multiplication of implicit unit-Monge matrices. This way,

parallel computation of the implicit highest-score matrix for two given strings can

be performed in local computation O(n
2

p), communication H(n, p) = O(n log p) and

31

S = O(log p) supersteps. Table 4.1 shows a summary of different approaches to

parallel LCS computation. In this chapter, we show the first BSP algorithms for

semi-local string comparison that achieve scalable communication as well as scalable

memory.

We will show two new algorithms for LCS computation which run using

work-optimal local computation of W (n, p) = O(n
2

p). The first algorithm achieves

communication H(n, p) = O(n log p√
p) and uses S = O(log p) supersteps. The key

idea of the algorithm is to carry out the highest-score matrix multiplication pro-

cedure in parallel and in a constant number of supersteps. When allowing log p

supersteps for the (min,+) multiplication algorithm, we can reduce its communica-

tion requirements and obtain a semi-local string comparison algorithm running with

H(n, p) = O(n√
p) and uses S = O(log p) supersteps.

Our parallel algorithms are based on new, efficient methods for parallel

(min,+) multiplication of implicit simple unit-Monge matrices. Another applica-

tion of these parallel algorithms is computing the longest increasing subsequence

(LIS) of characters in an input string. The LIS problem is a classical problem

in theoretical computer science and mathematics, and has been studied extensively

(see e.g. Knuth [1973]; Bespamyatnikh and Segal [2000]; Aldous and Diaconis [1999];

Schensted [1961]). We are given a sequence of n numbers, and we are asked to find

the longest increasing subsequence. The LIS problem is closely related to patience

sorting. In the patience sorting problem, we are looking for a cover of a given se-

quence of n integers which consists of a minimal number of decreasing subsequences

(see Mallows [1973]). The number of decreasing subsequences of such a minimal

cover is equal to the length of the longest increasing subsequence. For sequences

of length n, the fastest sequential algorithm for patience sorting/longest increasing

subsequence computation runs in time O(n log n) in the comparison-based model,

which only allows less-than or equal comparison on the sequence elements. Further,

it is possible to achieve O(n log logn) in the integer arithmetic model1. We will work

in the comparison-based model.

1Furthermore, Crochemore and Porat [2008] have shown a parameterized algorithm which runs
in time O(n log log k), where k is the length of the longest increasing subsequence.

32

Table 4.1: Parallel algorithms for LCS/Levenshtein distance computation of two
strings with length n on p processors. We show parallel work W (n, p), communica-
tion H(n, p) and the number of supersteps S.

W (n, p) H(n, p) S Description

O
(

n2

p

)
O(n) O(p) These bounds are obtained for global LCS computa-

tion using the parallel algorithm for grid dag com-
putation by McColl [1995] in combination with the
standard dynamic programming method for the LCS
problem by Wagner and Fischer [1974]

O
(

n2

p

)
O(n) O(p) In a similar fashion as shown above, we can obtain a

work-optimal algorithm for semi-local string compar-
ison using McColl [1995]’s method and the dynamic
programming algorithms by Alves et al. [2006], or the
seaweed algorithm shown in Chapter 3.

O
(

n2 logn
p

)
O
(

n2 log p
p

)
O(log p) Alves et al. [2002] proposed this parallel algorithm for

semi-local string comparison. This algorithm is based
on distance multiplication of highest-score matrices in
their explicit O(n2) space representation.

O
(

n2

p

)
O(pn log p) O(log p) This algorithm by Alves et al. [2003b] improves the

bounds from the (Alves et al. [2002]) paper for the
special case of semi-local string comparison in which
only string-substring distances need to be computed.

O
(

n2

p

)
O(n log p) O(log p) Using sequential multiplication of implicit highest-

score matrices, the previous algorithms can be im-
proved to these bounds (see Tiskin [2005]).

O
(

n2

p

)
O
(

n log p√
p

)
O(log p) This was the first algorithm for (semi-local) LCS com-

putation to achieve scalable communication (see Kr-
usche and Tiskin [2007]) by using the parallel highest-
score matrix multiplication shown in Section 4.2.

O
(

n2

p

)
O
(

n√
p

)
O(log2 p) Using the new parallel algorithm for highest-score ma-

trix multiplication shown in Section 4.3 (see also Kr-
usche and Tiskin [2010]), we can improve scalability
for communication and memory.

33

A number of parallel algorithms have been proposed for the LIS problem.

However, none of these algorithms achieve general work-optimality in relation to

the fastest sequential algorithms, or have rather restrictive slackness conditions. We

would first like to point out that the problem is trivially in the complexity class

NC, as it is an instance of the shortest path problem in a grid dag, which is in NC
by reduction to (min,+) matrix multiplication (see McColl [1993]). However, the

parallel algorithm resulting from this reduction is far from work-optimal.

On the EREW PRAM model with p processors, Nakashima and Fujiwara

[2006] showed that the problem can be solved using time O(n logn
p), but only if

p < n/m2 where m is the number of decreasing subsequences in a solution of

the equivalent patience sorting problem. The value of m is equal to the length

of the longest increasing subsequence, and this algorithm becomes asymptotically

sequential once m >
√
n. Any sequence of n numbers must have either a monoton-

ically increasing or a monotonically decreasing subsequence of minimum length
√
n

(see Erdős and Szekeres [1935]; Hammersley [1972]). Therefore, for any sequence of

numbers, the condition p < n/m2 definitely inhibits parallelism either for running

the algorithm on the sequence itself, or on its reversal.

Semé [2006] gave a BSP-style algorithm which uses time O(n log(n/p)). Since

1 ≤ p ≤ n, we have O(n log(np)) = O(n log n) which is asymptotically the same as

the sequential algorithm. Another parametrized algorithm by Semé and Youlou

[2007] uses the LARPBS model (see Pan [1998]) and allows solving the problem in

time O(k) on n processors if k is the length of the longest increasing subsequence.

A generic approach is to reduce the problem to computing the LCS of two strings of

length n. However, this is clearly not work-optimal as it gives time O(n2/p). The

LIS problem is a special case of computing the longest common subsequence (LCS)

of two permutation strings, which can be solved in time O(n log n) (see Hunt and

Szymanski [1977]) in the comparison-based model. While multiple work-optimal and

scalable algorithms for the general LCS problem exist, it remains open to obtain a

similar result for the LIS problem.

34

Tiskin studied the more general problem of semi-local comparison of per-

mutation strings and showed a sequential algorithm with running time O(n log2 n),

as well as various applications (see Tiskin [2006, 2008b]). The result shown here

is a parallel algorithm for semi-local comparison of permutation strings, which as

a special case also solves the patience sorting/longest increasing subsequence prob-

lems. We obtain time W (n, p) = O(n log2 n
p) for comparing two arbitrary permu-

tations of size n semi-locally on p processors. This is a work-optimal algorithm

for semi-local comparison of permutation strings. However, it is not work-optimal

for patience sorting, as the fastest sequential algorithm for this problem runs in

O(n log n) = o(n log2 n). Nevertheless, there are cases when using our algorithm is

advantageous, in particular when the problem size is too large for the sequence to

fit into the memory (or cache) of only one processor, or when we need to use many

processors, possibly with restricted communication bandwidth. In these cases, our

algorithm is superior to previous approaches by achieving scalable communication

cost of O(np log p) (this allows processors to share the communication workload).

Furthermore, we show that our algorithm achieves scalable memory cost of O(np) on

each processor. Therefore, to our knowledge, our solution for the longest increasing

subsequence problem is asymptotically the best parallel algorithm which is actually

scalable.

All our parallel algorithms are based on computing highest-score matrices for

independent parts of the input, and then using highest-score matrix composition to

obtain the final result. The predominant part of the work in highest-score matrix

composition is taken up by the (min,+) multiplication of two implicit unit-Monge

matrices. We will give a parallel algorithm for computing such (min,+) products,

which can be used as an algorithmic plugin for solving various string comparison

problems in parallel. The idea of using Monge matrices and distance multiplication

for obtaining parallel algorithms that solve the LCS problem has been applied to

LCS computation on the PRAM e.g. by Apostolico et al. [1990]. Since highest-score

matrix multiplication is the dominant part of the work for highest-score matrix com-

position, this immediately allows us to obtain work-optimal algorithms for parallel

35

semi-local string comparison if the sequential multiplication algorithms run in o(n2).

We will now show such algorithms and how they can be parallelized work-optimally,

with scalable communication, and with scalable memory.

Recall that in highest-score matrix multiplication, we compute the product

MC = MA �MB of two n× n matrices with

MC(i, k) = min
j

(MA(i, j) +MB(j, k)), where i, j, k ∈ [1 : n].

Our algorithms work on the implicit representation of highest-score matrices, i.e. we

multiply the non-trivial parts of two highest-score matrices (see Section 3.7). We

therefore need to compute the nonzeros of PC , such that

PΣ
C = PΣ

A � PΣ
B , (4.1)

given the nonzeros of two n× n permutation matrices PA and PB as an input. We

assume throughout the chapter, that (without loss of generality) n is a power of 2

for simplicity of presentation.

The remainder of this chapter is structured as follows. We show in Section 4.2

how (min,+) multiplication of simple unit-Monge matrices can be parallelized in a

constant number of supersteps in subquadratic time. This algorithm gives the best

theoretical number of supersteps, but is mostly shown here for historical reasons.

It was superseded by the algorithm shown in Section 4.3, which is superior in every

aspect except for requiring an asymptotically larger number of supersteps to pre-

serve reasonable slackness conditions. In Section 4.4, we show how our algorithms

can be applied to obtain parallel algorithms for LCS computation with scalable

communication. Finally, we discuss the suitability of our algorithms for parallel LIS

computation in Section 4.5.

36

4.2 Parallel unit-Monge matrix multiplication in O(1)

supersteps

We will now show a parallel algorithm for (min,+) multiplication of unit-Monge

matrices which runs in W (n, p) = O(n
1.5

p), H(n, p) = M(n, p) = n
p0.5

, and S = O(1).

This algorithm is based on a quadtree partitioning of the output matrix in order to

locate its nonzeros, and was the first to achieve scalable communication for parallel

LCS computation.

We will first show an algorithm to compute such an implicit matrix product

sequentially in time O(n1.5), which we then parallelize to run in W (n, p) = O(n
1.5

p).

The sequential algorithm was shown first by Tiskin [2008a], and was the first algo-

rithm to achieve sub-quadratic running time for (min,+) multiplication of implicit

simple unit-Monge matrices. This matrix multiplication method uses a divide-and-

conquer approach that recursively partitions the output matrix PC into smaller

blocks in order to locate its nonzeros. We compute the number of nonzeros con-

tained in each block. We can stop recursing in two cases: either if the block does

not contain any nonzeros, or if it is of size 1× 1 and thus specifies the location of a

nonzero.

Definition 4.2.1. The rectangular submatrix of a permutation matrix P corre-

sponding to a set of indices 〈i0−h : i0〉×〈k0 : k0 +w〉 is called a P -block. We denote

the number of nonzeros contained in such a block as follows:

P (〈i0 − h : i0〉 × 〈k0 : k0 + w〉) =
∑

(ı̂,̂)∈〈i0−h:i0〉×〈k0:k0+w〉
P (̂ı, ̂). (4.2)

37

This generalizes Definition 3.3.1, which corresponds to the case when i0 = n and

k0 = 0. We also note:

P (〈i0 − h : i0〉 × 〈k0 : k0 + w〉) = PΣ(i0 − h, k0 + w) (4.3)

− PΣ(i0, k0 + w)

− PΣ(i0 − h, k0)

+ PΣ(i0, k0)

Consider the square PC-block with index set 〈i0 − h : i0〉 × 〈k0 : k0 + h〉. To

compute the number of nonzeros contained within this block using Equation (4.3),

we need the values PΣ
C (i0, k0), PΣ

C (i0− h, k0), PΣ
C (i0, k0 + h), and PΣ

C (i0− h, k0 + h)

of the distribution matrix at the four corners of the block. Each of these values can

be computed using Equation (3.6). Furthermore, the differences of the PΣ
C values in

〈i0 − h : i0〉 × 〈k0 : k0 + h〉 from PΣ
C (i0, k0) are determined only by sets of relevant

nonzeros in PA and PB.

number of relevant nonzeros in PA

j

h

PA

PB

number of relevant nonzeros in PB

i j

k

PA(〈i0−h : i0〉×
〈0 : bj/2c〉)

PB(〈dj/2e : N〉 × 〈k0 : k0 + h〉)

PC block 〈i0−h : i0〉×
〈k0 : k0 + h〉

j-intervals where the
number of relevant
nonzeros remains
constant.

Figure 4.1: Matrix product cube representation and relevant nonzeros

Definition 4.2.2. The relevant nonzeros for a PC-block corresponding to indices

in S = 〈i0 − h : i0〉 × 〈k0 : k0 + h〉 are located in the PA-block with indices 〈i0 − h :

i0〉 × 〈0 : n〉, and in the PB-block with indices 〈0 : n〉 × 〈k0 : k0 + h〉 (see also

Figure 4.1, left side).

38

As the block size decreases, fewer nonzeros are relevant for a block. We split

the strips of relevant nonzeros at a position j/2 with j ∈ [1 : 2n], and count nonzeros

up to bj/2c in PA, and from dj/2e in PB. Therefore, we are interested in the values

PA(〈i0−h : i0〉×〈0 : bj/2c〉) and PB(〈dj/2e : n〉×〈k0 : k0+h〉). This is illustrated on

the left side of Figure 4.1. The figure shows the matrix product cube representation

where each point in the cube corresponds to an elementary (min,+) product. The

left side of the cube corresponds to matrix PA, the top to matrix PB and the front to

matrix PC . The nonzeros we count are contained within the areas highlighted in grey

on the left side of Figure 4.1. Since PA and PB are permutation matrices, a maximum

of 2h relevant nonzeros exist for each h×h block in PC . Also, for any PC-block, the

number of relevant nonzeros in PA up to j is nondecreasing when j increases, and the

number of relevant nonzeros in PB after j is nonincreasing. In the right-hand side

Figure 4.1, the dashed line shows an example for the number of relevant nonzeros

in PA, and the solid line shows an example for the number of relevant nonzeros in

PB. We can also see in this figure that contiguous j-intervals exist within which the

number of relevant nonzeros in PA and PB remains the same. We can use this fact

to encode PA(〈i0 − h : i0〉 × 〈0 : bj/2c〉) and PB(〈dj/2e : n〉 × 〈k0 : k0 + h〉) using

only O(h) space, and assign a unique index d ∈ [−h : h] to each j-interval.

Definition 4.2.3. Consider a PC-block corresponding to indices in S = 〈i0 − h :

i0〉 × 〈k0 : k0 + h〉. Let

∆S
A(d) = any PA(〈i0 − h : i0〉 × 〈0 : bj/2c〉) and (4.4)

∆S
B(d) = any PB(〈dj/2e : n〉 × 〈k0 : k0 + h〉) for any j

from the interval where

PA(〈i0 − h : i0〉 × 〈0 : bj/2c〉)− PB(〈dj/2e : n〉 × 〈k0 : k0 + h〉) = d. (4.5)

39

The predicate “any” states that we can take the value for any index j in the given

interval (as they are all equal). We can compute these sequences from the relevant

nonzeros for a PC-block by an O(h) scan.

For each PC-block, we are also interested in the sequence of minima

MS(d) = min (PΣ
A (i0, j) + PΣ

B (j, k0)) with j as above. (4.6)

The predicate “min” must be taken over all values of j corresponding to d, since

the values PΣ
A (i0, j) + PΣ

B (j, k0) can differ within a j-interval.

We can now obtain the values of PΣ
C at the four corners of the current PC-

block in time O(h) by taking the minimum over all values d ∈ [−h : h]:

PΣ
C (i0, k0) = min

d∈[−h:h]
MS(d), (4.7)

PΣ
C (i0 − h, k0) = min

d∈[−h:h]
(∆S

A(d) +MS(d)),

PΣ
C (i0, k0 + h) = min

d∈[−h:h]
(∆S

B(d) +MS(d)),

PΣ
C (i0 − h, k0 + h) = min

d∈[−h:h]
(∆S

A(d) + ∆S
B(d) + MS(d)).

From these values, the number of nonzeros in the current block can be obtained

using Equation (4.3). If this number is zero, the recursion can terminate at the

current PC-block. Otherwise, the algorithm proceeds to recursively partition the

block into four subblocks of size h/2 in order to locate the nonzeros. We partition

the PC-block into subblocks with the following four sets of indices:

S = 〈i0 − h/2 : i0〉 × 〈k0 : k0 + h/2〉 (4.8)

S = 〈i0 − h/2 : i0〉 × 〈k0 + h/2 : k0 + h〉

S = 〈i0 − h : i0 − h/2〉 × 〈k0 : k0 + h/2〉

S = 〈i0 − h : i0 − h/2〉 × 〈k0 + h/2 : k0 + h〉.

In order to partition the block, it is necessary to determine the sequence MS and

the relevant nonzeros for all PC-subblocks. Splitting the sets of relevant nonzeros

40

can be done trivially in O(h). To establish the sequence MS′
for each PC-subblock,

we count the number of nonzeros that can contribute to the minima in each of the

subblocks. Consider the PC-block with indices in S = 〈i0 − h : i0〉 × 〈k0 : k0 + h〉.
The nonzeros in PA and PB which can affect the minima of any of the four subblocks

are those relevant for the lower left subblock S , as the minima are always taken at

the lower left corner of a PC-block.

∆̄S
A(d) = any PA(〈i0 − h/2 : i0〉 × 〈0 : bj/2c〉) and (4.9)

∆̄S
B(d) = any PB(〈dj/2e : n〉 × 〈k0 : k0 + h/2〉) with j as in (4.5).

It is now possible to compute the sequence MS′
for each of the four PC-

subblocks by taking the minimum over the minima for the current block, adding

the numbers of nonzeros ∆̄S
A and ∆̄S

B where they could affect the minima at the

lower left corner of the respective subblock. Let d′ ∈ [−h/2 : h/2], and let d ∈ {d |||
∆̄S
A(d)− ∆̄S

B(d) = d′} when computing the following predicates.

MS (d′) = min MS(d), (4.10)

MS (d′) = min MS(d) + ∆̄S
B(d),

MS (d′) = min MS(d) + ∆̄S
A(d),

MS (d′) = min MS(d) + ∆̄S
A(d) + ∆̄S

B(d).

This is equivalent to computing the minima over the j-intervals for the PC-subblocks.

Theorem 4.2.4. Given their implicit representation, two permutation distribution

matrices of size n× n can be multiplied over the (min,+) semiring in time O(n1.5).

Proof. By analysis of the quadtree recursion resulting from the partitioning shown

above. Each recursive call in the quadtree recursion shown above can have four

children up to level log4 n since the output is a permutation matrix. Up to level

log4 n = 1
2 log2 n, the block size will decrease by a factor of two at each level.

Therefore, the work for these levels is dominated by level log4 n, which requires

time O(n · n/21/2 log2 n) = O(n1.5). In the levels above log4 n, maximally n blocks

41

can still contain nonzeros, therefore, the work for these levels is dominated by level

log4 n as well. Overall, we get running time O(n1.5) (see also Tiskin [2008a]).

We will now show how to obtain a parallel version of this highest-score matrix

multiplication algorithm. We assume w.l.o.g. that
√
p is an integer, and that every

processor has an unique identifier q with 0 ≤ q < p. Further assume that all

parameters match, such that e.g. n/p is integer. The initial distribution of the

nonzeros of the input matrices is assumed to be even among all processors, so that

every processor holds n/p nonzeros of PA and PB.

Definition 4.2.5. We define a two-dimensional grid of processors, where each pro-

cessor q corresponds to exactly one pair (qx, qy) ∈ [1 :
√
p] × [0 :

√
p − 1]. We also

assign a different PC-block with index set

Sq =

〈
(qx − 1) · n√

p
: qx ·

n√
p

〉
×
〈
qy ·

n√
p

: (qy + 1) · n√
p

〉
(4.11)

to each processor q.

Note first that the recursive divide-and-conquer computation from the pre-

vious section has at most p independent problems at level 1
2 log2 p. In the parallel

version of the algorithm, we start the recursion directly at this level and compute

the sequences ∆
Sq

A , ∆
Sq

B and MSq from scratch. To compute the values of sequence

MSq for every processor q, we must compute the elementary (min,+) products

DΣ
A

(
qx ·

n√
p
, j

)
+DΣ

B

(
j, qy ·

n√
p

)
with j ∈ [0 : n]. (4.12)

Theorem 4.2.6. Given the distributed implicit highest score matrices PA and PB,

all p · n elementary (min,+) products from Equation (4.12) can be computed on

a BSP computer in W = O(n/
√
p), H = O(p + n/p)[= O(n/p) if n > p2], and

S = O(1).

Proof. As we only have the implicit form of the highest score matrices distributed

among the processors, computing values DΣ
A(qx · n/√p, j) and DΣ

B(j, qy · n/√p) re-

quires counting nonzeros in PA and PB.

42

PA

PB

PC

i

k

j

Figure 4.2: Computing block-minima in PC by parallel prefix

First we redistribute the nonzeros to strips of width n/p by sending each

nonzero (̂ı, ̂) in PA and each nonzero (̂, k̂) in PB to processor b(̂− 1
2) · p/nc. This

is possible in one superstep using communication O(n/p).

Every processor holds all PA(̂ı, ̂) and all PB(̂, k̂) for ̂ ∈ 〈q · n√p : (q+1) · n√p〉.
Since DΣ

A and DΣ
B are obtained from PA and PB by the sum given in Equation (3.4),

we can compute the values DΣ
A(qx ·n/√p, j) and DΣ

B(j, qy ·n/√p) in blocks of n/p on

every processor by using a parallel prefix – respectively parallel suffix – operation (see

McColl [1993]) over index j. We have
√
p instances of parallel prefix (respectively

parallel suffix), one for each value of qx (respectively qy). Therefore, the total

cost of the parallel prefix and suffix computation is W (n, p) = O(n/p · √p) =

O(n/
√
p); the communication cost is negligible as long as n/p ≥ p ⇒ n ≥ p2.

The parallel prefix and suffix operations can be carried out in S = O(1) supersteps

by computing intermediate (local) prefix results on every processor, performing an

all-to-all exchange of these values, and then locally combining on every processor

the local results with the corresponding intermediate values. After the prefix and

suffix computations, every processor holds n/p elementary (min,+) products.

Now that the elementary (min,+) products have been computed, we redis-

tribute the data, so that each processor q has the data it needs to continue processing

PC-block Sq. To be able to continue the recursive procedure at this level, every pro-

43

PA

PB

PC

} N√
p

N√
p

︸︷︷︸

i

k

j

p vertical strips
N
p

nonzeros each

PA

PB

PC

√
p horizontal

strips with N√
p

nonzeros each

Figure 4.3: Cube representation of (min,+) matrix product

cessor must have the O(n/
√
p) values of sequence MSq , and the sets of relevant

nonzeros in PA and PB which allow us to compute ∆
Sq

A and ∆
Sq

B .

Theorem 4.2.7. If every processor holds n/p elementary (min,+) products, as well

as at most n/p nonzeros in PA and the same number of nonzeros in PB, we can

redistribute data such that each processor q holds the sequence MSq and the relevant

nonzeros for block Sq in one superstep using communication H(n, p) = O(n/
√
p).

Proof. Each nonzero in PA (and in PB respectively) increases the overall number

of nonempty j-intervals by one for each of the
√
p PC-blocks where this nonzero

is relevant; a nonzero does not affect the number of j-intervals for any other PC-

blocks. Each j-interval is assigned one value in the corresponding sequence MSq .

Therefore, the total number of MSq -values per processor before redistribution is at

most n/p · √p+ p = n/
√
p+ p. The total number of MSq -values per processor after

redistribution is n/
√
p, therefore the communication is perfectly balanced, apart

from the maximum of p values that can arise due to processor boundaries “splitting”

a j-interval. Since every processor holds n/p nonzeros before redistribution, and

every nonzero is relevant for
√
p PC-blocks, redistributing the relevant nonzeros can

also be done in O(n/
√
p) communication (see Figure 4.3, right). After this, every

processor has all the data that are necessary to perform the sequential procedure

from the previous section on its PC-block.

44

p = 16,N = 49
DC

Figure 4.4: Nonzeros in PC

Recursion level

h× h

0

1

2

3

h
2
× h

2

h
4
× h

4

h
8
× h

8

Figure 4.5: Partitioning a PC-block

A first result for the BSP complexity of parallel highest-score matrix multi-

plication follows immediately.

Corollary 4.2.8. The resulting parallel highest-score matrix multiplication proce-

dure has BSP cost

W (n, p) = O

((
n√
p

)1.5
)

= O

(
n1.5

p0.75

)
, H(n, p) = O

(
n√
p

)
, and S = O(1).

(4.13)

The implicit highest-score matrix multiplication procedure we have devel-

oped so far is not work-optimal: in the denominator of the running time we have

p0.75 instead of p, which is required for work-optimality. This is a problem when ap-

plying this procedure to parallel permutation string comparison, as the highest-score

matrix multiplication part of the work can then become dominant.

The parallel multiplication algorithm works by locating nonzeros in the re-

sulting implicit highest-score matrix recursively. For work distribution, the current

algorithm partitions the matrix into a grid of
√
p×√p blocks (see Figure 4.4) in its

precomputation step. Because not every block needs to contain the same number

of nonzeros, a load-imbalance can occur and prevent work-optimality. In the worst

case, only
√
p blocks contain nonzeros, and therefore only

√
p blocks of size n/

√
p

are processed in parallel. The sequential complexity for processing a h × h block

is O(h1.5). By setting h = n/
√
p, we obtain a bound for the computation time of

O(n1.5/p0.75).

We will now show a load-balancing strategy for work-optimal highest-score

matrix multiplication with scalable communication. To achieve this, we first prove

45

a small extension to the theorems by Tiskin [2008a]. A useful tool is parameterizing

the time for locating nonzeros by the number of nonzeros we are looking for within a

PC-block. Each processor should locate a set of nonzeros contained within a different

set of leaves of the partitioning quadtree (see Figure 4.5 for an illustration). One

way to implement this is to pick subsets of nonzeros based on the order in which the

sequential algorithm discovers the nonzeros. When partitioning, we then know for

each subblock how many nonzeros the sequential algorithm would have discovered

in this block, and therefore also know the index of the first and last nonzero in each

block. This allows us to only partition those blocks which contain nonzeros in the

subset we are looking for. We prove the following theorem.

Lemma 4.2.9. Consider a PC-block of size h×h in which we would like to locate k

nonzeros. Assume we are given sequence MS for this block and the relevant nonzeros

in PA and PB. On a single processor, the nonzeros in the PC-block can be located

in O(h
√
k) time.

Proof. When partitioning the PC-block using the quadtree scheme shown in Sec-

tion 3.3, the number of subblocks can increase geometrically only up to level 1
2 log k.

At this level, only k blocks can contain nonzeros from the subset we are looking for.

Therefore, k independent subproblems exist, each of which requires time O(h/
√
k)

in order to be partitioned further. Since PC is a permutation matrix, the size of

the k subproblems must decrease geometrically from this level on. Therefore, the

running time is dominated by level 1
2 log k, and the cost in the worst case is bounded

by O(h/
√
k · k) = O(h

√
k).

The reason why we have not achieved work-optimality so far is that only one

processor might need to locate all n√
p nonzeros in a block. After the pre-processing

phase in which we obtain the relevant nonzeros and minima MS in each of the p

PC-blocks, we introduce another step to balance the work of locating nonzeros.

46

Lemma 4.2.10. Highest-score matrix multiplication of two n× n implicit highest-

score matrices on p processors has BSP cost

W (n, p) = O

(
n1.5

p

)
, H(n, p) = O

(
n√
p

)
, and S = O(1). (4.14)

Proof. Each processor holds data of size O(n√
p) to process a PC-block of size n√

p× n√
p .

If this block contains more than n
p nonzeros, it cannot be processed work-optimally

by a single processor.

Therefore, we partition all blocks into zero or more complete groups with

exactly n
p nonzeros, and possibly one incomplete group which contains less than n

p

nonzeros. If the block contains at most n
p nonzeros, then we have a single group in

this block. We broadcast the data for the block to enough processors such that each

processor has to locate exactly one complete group of nonzeros. This is possible

with BSP cost H(n, p) = O(n√
p), and S = O(1) using a two-phase broadcast as

shown e.g. by Bisseling [2004] (pp. 66–67). Each processor then only locates the n
p

nonzeros in its respective group, and possibly the nonzeros in one incomplete group

if one existed for its block. The running time for locating n
p nonzeros in a block of

size n√
p is O(n

1.5

p) due to Lemma 4.2.9. As each of our PC-blocks can only contain

maximally n√
p nonzeros, the maximum number of processors we broadcast to is

√
p.

Moreover, the maximum number of complete groups is p, since there are only n

nonzeros in total. Furthermore, maximally one incomplete group per processor can

exist, which limits the number of such groups to p. The maximum total number of

separate groups of nonzeros is therefore 2p. Each of these groups can be processed in

time O(n
1.5

p) on a single processor, which gives the claimed work-optimal bound.

4.3 Parallel unit-Monge matrix multiplication in O(log p)

supersteps

In the previous section, we have shown a parallel algorithm for simple unit-Monge

matrix multiplication running in W (n, p) = O(n
1.5

p), H(n, p) = M(n, p) = (n
p0.5

),

and S = O(1). In this section, we give a new parallel algorithm for simple unit-

47

Monge matrix multiplication, based on a newer and faster sequential multiplication

method (see Tiskin [2010a,b]). We will show an algorithm that runs in W (n, p) =

O(n logn
p), H(n, p) = O(n log p

p), M(n, p) = O(np), and S = O(log p).

We start by describing the sequential algorithm that is the basis for our

parallel algorithm. This algorithm works by partitioning the input permutation

matrices into two half-sized parts each. Assume without loss of generality that n

is a power of 2. We define PA,lo as the n
2 × n

2 sized permutation matrix which is

induced by the nonzeros in PA(〈0 : n〉, 〈0 : n
2 〉). Analogously, we obtain PA,hi from

PA(〈0 : n〉, 〈n2 : n〉), PB,lo from PB(〈0 : n
2 〉, 〈0 : n〉), and PB,hi from PB(〈n2 : n〉, 〈0 :

n〉). We then have

P ′ΣC,lo = PΣ
A,lo � PΣ

B,lo and P ′ΣC,hi = PΣ
A,hi � PΣ

B,hi, (4.15)

Matrices P ′C,lo and P ′C,hi can be obtained by recursively calling our multiplication

algorithm for matrices of size n
2 × n

2 to compute the result of Equation (4.15).

We can preserve the indices of the rows and columns in PA and PB which were

deleted obtaining PA,lo, PA,hi, PB,lo, and PB,hi, and use them to convert the resulting

matrices P ′C,lo and P ′C,hi to matrices PC,lo and PC,hi of size n× n by adding rows

or columns of zeros. Notice that since PA and PB are permutation matrices, the

sum PC,lo + PC,hi of the resulting matrices will form a permutation matrix as well.

We get (see Tiskin [2010b] for details)

PΣ
C (i, k) = min(PΣ

C,lo(i, k) + PΣ
C,hi(0, k), PΣ

C,hi(i, k) + PΣ
C,lo(i, n)). (4.16)

The full procedure for this divide step of the computation is shown in Algorithm 2.

The function ImplicitMult carries out the highest-score matrix multiplication recur-

sively on the two subproblems and will be defined in Algorithm 4.

It now remains to merge the partial results PC,lo and PC,hi to obtain PC

according to (4.16). By analysing the difference

δ(i, k) = (PΣ
C,lo(i, k) + PΣ

C,hi(0, k))− (PΣ
C,hi(i, k) + PΣ

C,lo(i, n)), (4.17)

48

Algorithm 2 Recursive simple unit-Monge matrix multiplication, divide step

{ Compute PC,hi }

procedure ImplicitMult Split Recurse(PA, PB)

input: Two implicit unit-Monge matrices PA and PB of sizes n× n
output: A pair of matrices (PC,lo, PC,hi) of sizes n× n

if n = 1 return ((1), (1))

ilo = 1
2

ihi =
1
2

for ı̂ = 1
2

to n− 1
2

let ̂ s.t. PA(ı̂, ̂) = 1
if ̂ > n

2

Ihi(ihi) = ı̂
ihi ← ihi + 1

else

Ilo(ilo) = ı̂
ilo ← ilo + 1

for all (ı̂, ̂) ∈ 〈0 : n〉2 with PA(ı̂, ̂) = 1
if ̂ > n

2

let ı̂′ s.t. Ihi(ı̂
′) = ı̂

PA,hi(ı̂
′, ̂− n

2
) = 1

else

let ı̂′ s.t. Ilo(ı̂
′) = ı̂

PA,lo(ı̂
′, ̂) = 1

klo = 1
khi = 1

for k̂ = 1
2

to n− 1
2

let ̂ s.t. PB(̂, k̂) = 1
if ̂ > n

2

Khi(khi) = k̂
khi ← khi + 1

else

Klo(klo) = k̂
klo ← klo + 1

for all (̂, k̂) ∈ 〈0 : n〉2 with PB(̂, k̂) = 1
if ̂ > n

2

let k̂′ s.t. Khi(k̂
′) = k̂

PB,hi(̂− n
2
, k̂) = 1

else

let k̂′ s.t. Klo(k̂
′) = k̂

PB,lo(̂, k̂) = 1

P ′
C,lo = ImplicitMult(PA,lo, PB,lo)

for all (ı̂, k̂) ∈ 〈0 : n
2
〉2

with P ′
C,lo(ı̂, k̂) = 1

PC,lo(Ilo(ı̂),Klo(k̂)) = 1

{ 2. Recursive calls }

P ′
C,hi = ImplicitMult(PA,hi, PB,hi)

for all (ı̂, k̂) ∈ 〈0 : n
2
〉2

with P ′
C,hi(ı̂, k̂) = 1

PC,hi(Ihi(ı̂),Khi(k̂)) = 1

{ Split PB into PB,lo and PB,hi}

return (PC,lo, PC,hi)

{ Split PA into PA,lo and PA,hi}

{ Compute PC,lo }

{ 1. Compute the index transformation to obtain the half-sized matrices PA,lo,

PA,hi, PB,lo, PB,hi }

49

we get

δ(i, k) =
∑

ı̂∈〈0:i〉,k̂∈〈0:k〉 PC,hi(̂ı, k̂)−∑ı̂∈〈i:n〉,k̂∈〈k:n〉 PC,lo(̂ı, k̂). (4.18)

Based on the sign of δ, we can determine the nonzeros of PC as follows:

1. If δ(̂ı+ 1
2 , k̂ + 1

2) ≤ 0, we have PC (̂ı, k̂) = PC,lo(̂ı, k̂).

2. If δ(̂ı− 1
2 , k̂ − 1

2) ≥ 0, we have PC (̂ı, k̂) = PC,hi(̂ı, k̂).

3. If δ(̂ı+ 1
2 , k̂ + 1

2) > 0 and δ(̂ı− 1
2 , k̂ − 1

2) < 0, we have PC (̂ı, k̂) = 1.

Consider two coordinates (i, k) on the two-dimensional plane. We assign different

colours to areas in the plane based on the sign of δ(i, k) as follows. Let Colour(i, k) =

red if δ(i, k) < 0, Colour(i, k) = green if δ(i, k) = 0, and Colour(i, k) = blue if

δ(i, k) > 0. Also, let Colour(i, k) = red if i < 0 or k < 0, and Colour(i, k) = blue

if i > n or k > n. Furthermore, we can define a set of colours for each half-integer

point on the plane as the set of the colours of all four adjacent integer pairs. We have

ColourSet(̂ı, k̂) = {Colour(̂ı ± 1
2 , k̂ ± 1

2)}. Using this colouring, we can determine

the nonzeros of PC by using Algorithm 3 to separate its areas.

Since δ is monotonic in both its parameters, we can find the nonzeros in PC

by tracing the upper or lower boundary of the set δ−1({0}), which corresponds to

the green area in Figure 4.6. This can be done in linear time by computing values

of δ incrementally along a path on the upper or lower boundary of δ−1({0}) (see

also Tiskin [2010b]). Algorithm 3 shows how to trace the upper boundary of the area

where δ(i, k) = 0. The colours correspond to the three cases shown above: in the

red area, we have PC (̂ı, k̂) = PC,lo(̂ı, k̂), and in the blue area, PC (̂ı, k̂) = PC,hi(̂ı, k̂).

In the green area, we find nonzeros that correspond to case 3 from above. Since

we only advance the values ı̂ and k̂ in steps of one, we can use Theorem 3.3.6 to

compute all required values of the difference function δ in constant time starting

with δ(n, 0) = 0. When we have isolated a nonzero that corresponds to case 3, we

store its location in list L. Array T contains for each column k̂ the respective row ı̂

of the top boundary of the green area.

50

Algorithm 3 Tracing the top boundary of δ−1({0})

procedure Trace Top (PC,lo, PC,hi)
input: A pair of n× n matrices (PC,lo, PC,hi)
output: Array T containing the top boundary,

and a list L of nonzeros from case 3

ı̂ = n− 1
2

k̂ = 1
2

while ı̂ > 0 and k̂ < n

if ColourSet(ı̂, k̂) = { red, green, blue }
{ We have discovered a nonzero in PC. }

L← L ∪ {(̂ı, k̂)}
{ we move up, see case (a) in Figure 4.6 }

ı̂← ı̂− 1

else if ColourSet(ı̂, k̂) = { red, green }
{ if the half-integer point above is monochromatic red, we have reached

the top boundary. }

if ColourSet(ı̂− 1, k̂) = { red }
{ store top boundary for column k in T [k̂] }

T [k̂] = ı̂
{ top boundary, go right, see case (b) in Figure 4.6 }

k̂ ← k̂ + 1
else { otherwise, we are tracing the left boundary and need to move up.

See case (c) in Figure 4.6 }

ı̂← ı̂− 1
return (T, L)

Once we have separated the green area from the red and the blue areas, we

can locate the nonzeros in PC according to the three conditions shown above. The

full sequential method as described in Tiskin [2010b] is shown in Algorithm 4. The

running time of this algorithm is O(n log n), since in each recursive step, we take

linear time to partition into two half-sized subproblems using Algorithm 2, and we

also take linear time to merge the results of these subproblems using Algorithms 3

and 4.

For the parallel version of this algorithm, we assume that the nonzeros of

the input matrices are initially distributed arbitrarily, but in equal fractions across

p processors. Obtaining a parallel version of Algorithm 2 is straightforward. We

execute each step on p processors in parallel, each processor can work independently

on the set of nonzeros it holds for splitting the input matrices. In the recursive call,

51

δ(i, k) < 0

δ(i, k) > 0

i

k

PC(n− 1
2
, 1
2
)

Case (b): go right

Case (c): go up

Case (a): go up

Figure 4.6: Illustration of Algorithm 3

Algorithm 4 Recursive simple unit-Monge Matrix Multiplication

procedure ImplicitMult(PA, PB)

input: Implicit n× n unit-Monge matrices PA, PB

output: An n× n matrix PC, with PΣ
C = PΣ

A � PΣ
B

(PC,lo, PC,hi)← ImplicitMult Split Recurse(PA, PB)
(T, L)← Trace Top (PC,lo, PC,hi)

for k̂ ∈ 〈0 : n〉
{ Nonzeros from case 3 were stored in list L.
When we do not have such a nonzero, we use the nonzeros from PC,lo and

PC,hi according to cases 1 and 2. }

if there is any ı̂ with (̂ı, k̂) ∈ L
PC (̂ı, k̂) = 1

else

{ distinguish cases 1 and 2 using the top boundary of the green area }

if there is any ı̂ with PC,lo(̂ı, k̂) = 1 and ı̂ ≤ T [k̂]
{ nonzeros from case 1 are copied from PC,lo }

PC (̂ı, k̂) = 1

else if there is any ı̂ with PC,hi(̂ı, k̂) = 1 and ı̂ ≥ T [k̂]
{ nonzeros from case 2 are copied from PC,hi }

PC (̂ı, k̂) = 1
return PC

52

k

i

Figure 4.7: Partitioning into a grid of p× p blocks

we partition the processors into two subsets of size p
2 , to execute the recursive calls

in parallel. After log p such recursive steps, each processor works on an indepen-

dent subproblem of multiplying two implicit matrices with n
p nonzeros each. Each

processor can solve this subproblem in time O(np log n
p) = O(n logn

p). It remains to

merge the resulting PC,lo and PC,hi matrices. We now describe a parallel version of

Algorithm 3.

In order to achieve scalable communication, we partition the output matrix

PC into a grid of blocks sized n
p × n

p (assuming w.l.o.g. that n is a multiple of p).

For each such block, we find the colour of its four corners in order to determine the

types of the nonzeros contained in it. We compute Colour(r · np , s · np) for all pairs

(r, s) ∈ [0 : p] × [0 : p]. This results in p2 values that give the value of Colour at

all intersections of the p × p grid (see Figure 4.7, left). We call a block for which

all the corners have the same colour monochromatic. According to these values, we

can determine where the nonzeros in each block come from:

• If the block is monochromatic red, all nonzeros within the block are taken

from PC,lo since the value of δ is negative throughout the block and therefore

case 1 from above applies to all values of PC inside this block.

53

• If the block is monochromatic blue, all nonzeros within the block are taken

from PC,hi since the value of δ is positive throughout the block and therefore

case 2 from above applies to all values of PC inside this block.

• If the block is monochromatic green, the block cannot contain any nonze-

ros since it does not contain areas in which δ becomes positive or negative.

Therefore, none of the three cases shown above can apply to any value of PC

contained in this block.

• If the block is non-monochromatic, it intersects the boundary of δ−1({0}) (the

green area), and we need to trace this boundary through the block to locate

nonzeros corresponding to case 3. Furthermore, knowing the intersection of

the boundary with the block, we can distinguish the nonzeros from cases 1

and 2 within the block.

Observation 4.3.1. We can have at most O(p) blocks that are non-monochromatic.

Proof. The upper boundary of δ−1({0}) intersects at most 2p blocks in our grid,

the same is true for the lower boundary. Therefore, the maximum number of non-

monochromatic blocks is 4p (see also Figure 4.7, right).

Lemma 4.3.2. If PC is of size n×n and n > p3, we can compute Colour(r · np , s · np)

for all pairs (r, s) ∈ [0 : p]×[0 : p] using W (n, p) = O(np), H(n, p) = O(np), S = O(1)

and M(n, p) = O(np).

Proof. The value of δ(i, j) can be split into the two sums

δlo(i, k) =
∑

ı̂∈〈i:n〉,k̂∈〈k:n〉 PC,lo(̂ı, k̂), and

δhi(i, k) =
∑

ı̂∈〈0:i〉,k̂∈〈0:k〉 PC,hi(̂ı, k̂). (4.19)

We can compute the values δlo and δhi on a p×p grid using parallel prefix in BSP time

W (n, p) = O(np) and communication O(p2) in a constant number of supersteps. This

can be implemented by distributing the nonzeros of PC,lo and PC,hi in “strips” of size

n
p ×n. Processor q, q ∈ [1 : p], receives all nonzeros (̂ı, k̂) with (q−1) · np < ı̂ ≤ q · np in

54

a single superstep using communication O(np). Then, each processor q can compute

p values

δ′q,lo(r) =
∑

ı̂,k̂ PC,lo(̂ı, k̂), and

δ′q,hi(r) =
∑

ı̂,k̂ PC,hi(̂ı, k̂), with r ∈ [1 : p],

ı̂ ∈ 〈(q − 1) · np : q · np 〉, and

k̂ ∈ 〈(r − 1) · np : r · np 〉. (4.20)

We have p2 values each for δ′q,lo and δ′q,hi, one value for each grid intersection, which

we broadcast to all processors. After the broadcast, each processor can evaluate

Colour(r · np , s · np) for all grid points (r, s) ∈ [0 : p]× [0 : p] in time O(p2). If n > p3,

we have O(np + p2) = O(np), therefore, we get the claimed bounds on computation

and communication.

Lemma 4.3.3. Given the nonzeros of two n× n permutation matrices PA and PB,

distributed equally across p < 3
√
n processors, we can compute the nonzeros of a

matrix PC with PΣ
C = PΣ

A � PΣ
B using W (n, p) = O(n logn

p), H(n, p) = O(np log p),

M(n, p) = O(np), and S = O(log p).

Proof. We have W (n, p) = O(n logn
p) due to the last recursive step in the parallel

version of Algorithm 2. Afterwards, we combine the resulting PC,lo and PC,hi ma-

trices in log p supersteps until we have obtained a distributed version of PC . At

level l of this merging tree, we have r = p/2l processors merging matrices of size

n
2l
× n

2l
. This can be done in a constant number of supersteps using W (n, p) = O(np),

M(n, p) = H(n, p) = O(np) due to Lemma 4.3.2. We have log p such levels, which

gives the claimed bounds.

This new parallel algorithm is work-optimal w.r.t. the sequential method shown

in Tiskin [2010b], and has scalable communication within a log-factor of the opti-

mum. Our algorithm has cubic slackness, requiring n > p3 since otherwise, the work

for computing the values of Colour in the proof of Lemma 4.3.2 becomes dominant.

However, this poses no realistic restriction on the problem sizes even on hundreds of

55

thousands of processors – the expected problem size to justify the use of a parallel

system of that scale will easily be large enough. The only criterion by which the

algorithm from Section 4.2 is superior to our new method is the number of required

supersteps: in Section 4.2, only a constant number of supersteps is required. Our

new algorithm could be adapted to run in a constant number of supersteps, how-

ever, this would introduce an exponential slackness condition which would render

the method impractical. The algorithm from this section is also much simpler than

the previous algorithm shown in Section 4.2, and is very likely to be practical. In

the next sections, we will study two applications of this algorithm.

4.4 Parallel LCS computation

Semi-local string comparison is useful for obtaining efficient parallel algorithms for

LCS computation (see Apostolico et al. [1990]; Alves et al. [2006]; Krusche and

Tiskin [2007]). The sequential highest-score matrix multiplication procedure shown

by Tiskin [2010a] can be used to derive parallel algorithms that solve the semi-

local LCS problem by partitioning the alignment dag into p strips. The problem is

solved independently on one processor for each strip using dynamic programming to

compute the implicit highest-score matrices using the seaweed algorithm. After this,

we merge the resulting highest-score matrices in a binary tree of height log p. This

procedure requires data of size O(n) to be sent by every processor in every level of the

tree, and the sequential merging requires time O(n1.5) for computing the resulting

highest-score matrix. The problem with this simple approach is that it does not

achieve scalable communication, since O(n) items of data must be transferred.

We now show how to achieve scalable communication using the algorithm

from Section 4.3.

Theorem 4.4.1. Given two strings x and y of length n which are distributed in equal

fractions between p processors, we can compute a distributed version of their implicit

highest-score matrix Ax,y using W (n, p) = O(n
2

p), H(n, p) = O(n√
p + n log2 p

p) =

O(n√
p), M(n, p) = O(n√

p), and S = O(log2 p).

56

Proof. As the first step, each processor compares a single pair of substrings from

x(q−1)· n√
p
. . . xq· n√

p
and y(r−1)· n√

p
. . . yr· n√

p
with q, r ∈ [1 :

√
p]. This requires com-

putation work O(n
2

p). After that, our unit-Monge matrix multiplication algorithm

is used at every level of a quadtree-like merging step to compute distributed im-

plicit highest-score matrices for longer pairs of substrings. At the bottom level,

the matrices are merged sequentially, requiring time O(n√
p log n√

p) = O(n logn√
p). At

higher levels of the quadtree, blocks are merged in parallel. In particular at level

log r, 1 ≤ r ≤ p, the block size is n√
r
, and each merge is performed by a group

of p/r processors using computation time O(
n√
r

log n√
r

p/r). The sum of the running

times over all log p levels of the merging phase is equal to O(n logn√
p). Therefore, the

overall running time W (n, p) = O(n
2

p + n logn√
p · log p) = O(n

2

p). The communica-

tion and memory requirements are dominated by each processor having to read and

store the data for the two substrings of length n√
p it needs to compare, which gives

H(n, p) = M(n, p) = O(n√
p). Overall, we need S = O(log2 p) supersteps since each

level log r in the merging tree requires log p/r supersteps to execute.

1.5

22.533.5

0 2000 4000 6000 8000 10 000

0

200

400

600

800

1000

x 1.0

x 4.0

String length

C
o
m
m
u
n
ic
a
ti
o
n
 g
a
p

Speedup

Figure 4.8: Potential speedup for LCS computation through scalable communica-
tion, p = 16

The communication cost of this new algorithm is dominated by the cost

required to read the input strings at the boundary of the
√
p × √p grid blocks.

57

It seems that this might be a natural lower bound, which prohibits improving the

communication performance any further. However, a proof of such a lower bound

does not seem trivial.

Performance improvements over the standard grid dag method can be ex-

pected on parallel machines with a relatively low-bandwidth communication network

where the time for communication can become the dominant part of the computa-

tion. In practice, communication cycles can take be between 100 and 1000 times

longer than computation cycles (see Krusche and Tiskin [2006] for an experimental

study). In this case, using our new algorithm could give a speedup factor between

1 and
√
p over using the standard grid dag approach. We can model the speedup

over the grid dag approach as follows. Let g be the communication gap from the

standard BSP model, i.e. g specifies how long communication takes compared to

computation. We have the running time for LCS computation using the grid dag

method as

Tdag(n, p) =
n2

p
+ g · n, (4.21)

and the running time using our new algorithm

Tnew(n, p) =
n2

p
+
n log n√

p
+ g · n√

p
. (4.22)

The speedup is estimated as

S(n) =
Tdag(n, p)

Tnew(n, p)
. (4.23)

Figure 4.8 shows the potential speedup over the grid dag method when using our

new parallel algorithm on 16 processors. The maximal theoretical speedup that can

be obtained from using our method on such a system is 4. The communication gap

values are chosen between 100 and 1000, estimating that communicating a single

integer would take between 100 and 1000 times longer than evaluating a cell in the

seaweed algorithm. Such values would be realistic e.g. for reading the sequence data

from main memory in an SMP system (which is usually around 100 times slower

58

than reading from L1 cache or a register, see Fog [2010]), or when communicating

the data using a network, which is much slower (see Skillicorn et al. [1997]; Krusche

[2005]; Krusche and Tiskin [2006] for performance measurements). We see from

our figure that speedup of up to the theoretical maximum of
√
p is possible within

this estimation, and that exploiting scalable communication can in fact be used to

improve the performance for LCS computation with reasonable problem sizes.

4.5 Parallel permutation string comparison

Another application of our algorithm is parallel computation of longest increasing

subsequences. Using our new algorithm for multiplication of simple unit-Monge

matrices, we can get within a logn-factor of work-optimality for this problem. We

use iterated application of highest-score matrix composition to solve the problem

of semi-local permutation string comparison. In permutation string comparison, we

have |x| = |y| = |Σ| = n, and x and y each contain exactly one occurrence of every

character. The LIS problem for a string x can be solved by observing that any LCS

of x and the sequence of all characters from Σ in ascending order is a LIS of x. We

can also consider n-permutation substrings which are defined as arbitrary substrings

of a permutation string of length n. We say that two permutation substrings are

character-disjoint if they consist of disjoint sets of characters.

We observe that the alignment dag for two permutation strings of length n

contains exactly n match cells. Therefore, we can show that we can read the input

and generate the set of match cells in the alignment dag using perfectly scalable

memory and communication. This is possible because our input strings are permu-

tation strings. Each character in the alphabet is responsible for exactly one match

cell. Therefore, we can read and distribute the input more efficiently than in the

general LCS case.

Lemma 4.5.1. The set of match cells for two permutation strings of length n can

be obtained using time W (n, p) = O(n logn
p), as well as scalable communication and

memory H(n, p) = M(n, p) = O(np).

59

Seaweeds in columns without matches are unaffected by the composition.

Figure 4.9: Highest-score matrix composition for permutation strings

Proof. We would like to show that we only need to store a fraction of n/p of both

input strings on each processor. This is obviously the case for input string x, which is

partitioned into disjoint substrings of length n/p. However, we must still show that

it is not necessary for each processor to store the entire other input string y. Initially,

each processor q ∈ [1 : p] holds substrings x(q−1)·n
p

+1 . . . xq·np and y(q−1)·n
p

+1 . . . yq·np .

In order to determine the position of each character from x(q−1)·n
p

+1 . . . xq·np in y, we

need to find the sorting permutation of y, after which each processor can retrieve the

positions of all characters in its fraction of x. In the comparison-based model, this

is possible in BSP cost W (n, p) = O(n logn
p), H = O(np) and S = O(1) supersteps

e.g. using parallel sorting by regular sampling (see Shi and Schaeffer [1992]; Tiskin

[1998]). After sorting, we can redistribute the data using communication O(n/p)

such that each processor holds all matches for matching its substring of x against y.

At no point in this initial sorting and redistribution procedure do we need to store

more than O(np) elements of data on any processor.

In our permutation string comparison algorithm, we partition the alignment

dag into strips of height n
p . When using highest-score matrix composition to com-

bine two such strips, we observe that we only need to multiply simple unit-Monge

matrices of size n
p × n

p .

Lemma 4.5.2. Consider highest-score matrix composition for two character-disjoint

n-permutation substrings x and y, both of length m, and a permutation string z of

60

length n. We can compute the implicit representation of highest-score matrix Axy,z

from the implicit representations of Ax,z and Ay,z by computing a (min,+) product

of two 2m× 2m highest-score matrices.

Proof. Since x and y are permutation substrings, each column in the alignment

dags Gx,z and Gy,z contains either a single match cell, or no match cells at all.

Moreover, since x and y are character-disjoint, the combined alignment dag Gxy,z

cannot have columns with more than one match. Consider the behaviour of the

seaweed algorithm on Gxy,z. Each column in Gx,z that does not contain a match

will only contain seaweed crossings. Therefore, all seaweeds which start in a column

without a match in Gxy,z cannot double-cross any other seaweeds since they start

and end in the same column in Gx,z, Gy,z and Gxy,z. Only 2m seaweeds can have

non-trivial double-crossings. These double-crossings can be resolved by computing a

(min,+)-product for two matrices of size 2m×2m. All other seaweeds are unaffected

by the concatenation of the alignment dags. An illustration is shown in Figure 4.9

Theorem 4.5.3. The semi-local LCS problem for permutation strings of length n

can be solved on a BSP computer using W (n, p) = O(n log2 n
p), H(n, p) = O(n log p

p),

S = O(log2 p) and M(n, p) = O(np).

Proof. We partition one of the input strings into substrings of length n/p, and com-

pute the highest-score matrix for each of these substrings compared to the other

input string in parallel in time O(n log2 n
p) (see Tiskin [2010b]), which is the compu-

tationally dominant part of this algorithm. This is possible because the inputs are

permutation strings, and therefore only n
p character matches exist for each substring.

We can therefore apply Lemma 4.5.2 to reduce the computation to an input of size

n
p . We then start merging the highest-score matrices in parallel using our new paral-

lel highest-score matrix multiplication algorithm. Consider level l ∈ [0 : log p] of the

merging process, and let r = 2l. We again use the fact that the resulting highest score

matrix for comparing a permutation string and a permutation-substring of length

2rn/p can be stored in O(2rn/p) space. Furthermore, each merge is performed by

61

1 2

3

4

5

6

7

8

20 40 60 80 100 120

0

20

40

60

80

100

Number of processors p

C
o
m
m
u
n
ic
a
ti
o
n
 g
a
p
 g

Figure 4.10: Estimated LIS computation speedup if input is known to all processors,
input sequence length fixed as n = 10000

a group of 2r processors. By taking the sum over all values r corresponding to the

log p levels of the merging process, we get computation time

O

(∑

r

(
2rn log(2rn/p)

p

)
/(2r)

)
= O

(
n log n

p

)
,

and communication cost

O

(∑

r

2rn

p
/(2r)

)
= O

(
n log p

p

)

for the merging phase. This analysis includes the top level of the merging tree

where r = p. The number of supersteps S = O(log2 p), as the merging tree contains

O(log p) levels which require O(log p) supersteps each.

We have now shown that our algorithm is scalable in computation, commu-

nication and memory for semi-local permutation string comparison. However, the

question remains whether we can expect to achieve speedup for LIS computation

with reasonable problem sizes. For estimating this speedup, consider the following

62

66.1

6.2

6.3

6.4

6.5

6.6

6.7

0 2000 4000 6000 8000 10 000

0

200

400

600

800

1000

Sequence length n

C
o
m
m
u
n
ic
a
ti
o
n
 g
a
p
 g

Figure 4.11: Estimated LIS computation speedup for distributed input strings, num-
ber of processors fixed as p = 16, record size r = 2

11.912

12.1

12.2

12.3

12.4

12.5

0 2000 4000 6000 8000 10 000

0

200

400

600

800

1000

Sequence length n

C
o
m
m
u
n
ic
a
ti
o
n
 g
a
p
 g

Figure 4.12: Estimated LIS computation speedup for distributed input strings, num-
ber of processors fixed as p = 16, record size r = 10

63

simple performance model. We compute the LIS of a sequence with n elements

using p processors. We assume that we have a record size r, which specifies the size

of each sequence element. We consider two different input data distributions.

1. In the first scenario, we assume that the entire sequence is known to every pro-

cessor before starting the computation. We define the numbers of sequence

elements which need to be transferred between processors before our compu-

tation as bpar = bseq = 0. In this case, the only way for our parallel algorithm

to run faster than the sequential method is by achieving scalability for com-

putation on many processors. Its scalable communication property is not an

advantage over the sequential method anymore, since the sequential algorithm

can run without any communication in this case.

2. In the second scenario, we assume that each processor initially holds an equal

fraction of the sequence. This setup is favourable for our parallel algorithm,

since our sequential algorithm will need to first collect the input sequence data

to a single processor which will then perform the computation. In practice, this

case would occur if the sequence is a result of a previous parallel computation,

or if the sequence consists of large data records which cannot all be stored on

a single processor. In our model, we have to add bseq = n data elements to the

communication cost, since these need to be distributed to all processors first.

In the parallel algorithm, we need only to compensate for having a distributed

input by adding a term bpar = rnp , as each processor only needs to read an

O(np)-sized fraction of the input.

Let g be the communication gap from the standard BSP model. The running time

for the sequential computation is then given by

tseq(n) = n log n+ gbseq . (4.24)

We neglect constant factors, as we are only looking at the performance ratio com-

pared to the parallel algorithm. The running time of the parallel computation using

64

p processors is

tpar(p)(n, p) =
n log2 n

p
+ g ·

(
bpar +

n

p
log p

)
. (4.25)

We compute the speedup

S(p) =
tseq(n)

tpar (n, p)
. (4.26)

If the input sequence is known to all processors in advance, we fix the se-

quence length and see if our algorithm can achieve scalability on different numbers of

processors. Figure 4.10 shows estimations for this case, fixing the sequence length

to 10000 elements. We see that our algorithm can still achieve speedup over the

sequential method, however requiring a comparatively large number of processors.

Applications which correspond to this case would therefore not benefit much from

using our new algorithm, although at least some speedup can be obtained.

In the second scenario with a distributed input sequence, we look at running

the algorithm on sequences of different lengths on 16 processors. This can corre-

spond to a large SMP-style system for small values of g (values between 10 and

100 would be typical), or to a small cluster system, which would have higher values

of g. Figure 4.11 shows the estimated speedups for a range of string lengths and

communication gap parameters, assuming that we have a record size of r = 2. This

corresponds to computing the LIS of a sequence of double-precision floating point

values: each input sequence element requires 64 bits of space, and we can perform

our highest-score matrix computations using 32-bit integers. In Figure 4.12, we

evaluate the same scenario for a larger record length of r = 10 (this could occur

e.g. in database applications). We see that using our parallel algorithm becomes

beneficial if the input sequences become longer, and if the communication gap is

large. Furthermore, our algorithm can potentially achieve very good speedup when

the record size is large. We conclude that in the scenario where we would like to

compute an LIS of a sequence that is pre-distributed in equal fractions between

processors (either in separate processor caches or main memory in an SMP system,

65

or on different nodes of a cluster system), our new algorithm is very likely to be

practically scalable.

In conclusion, we would like to point out that these speedup estimations

only serve the purpose of evaluating the practical potential of a stronger theoretical

result. Our main aim is to show a first approach to parallel LIS computation which

is scalable, and pointing out that despite the LIS problem being well-studied, no

algorithms had been proposed so far which are scalable and can compete with the

fastest sequential method. Improving our algorithm to achieve work-optimality

would greatly improve its potential for practical application.

66

Chapter 5

Parameterized Semi-local String

Comparison

In this chapter, we present new algorithms for comparing highly sim-

ilar or highly dissimilar strings. For the standard LCS problem, many

such algorithms exist. We show how these existing algorithms can be ob-

tained using semi-local string comparison. Most of these algorithms are

limited to global LCS computation, i.e. computing the LCS for the in-

put strings only. We show new parameterized algorithms in this chapter

which compute semi-local string alignments as introduced in Chapter 3,

and are therefore usable as a plug-in to speed up the parallel algorithms

from Chapter 4.

5.1 Background

In this chapter, we look at parameterized algorithms for semi-local string compari-

son, which run faster either for highly similar or highly dissimilar input strings. A

multitude of such algorithms have been shown for the LCS problem, the best known

example being perhaps the algorithm by Hunt and Szymanski [1977], which has

been used e.g. to implement the diff command in Unix operating systems (Free

Software Foundation (FSF) [2010b]). We will show how traditional parameterized

67

algorithms for the LCS problem can be understood using a simplified variant of

the seaweed algorithm, and also show parameterized algorithms for improving the

performance of semi-local string comparison itself.

More efficient special case algorithms for the LCS problem can be obtained

when parameterizing either by the number r of match cells in the alignment dag, by

the length p of the LCS, or by the edit distance. Previously, high-similarity string

comparison has been considered by Hirschberg [1977]; Apostolico and Guerra [1987];

Nakatsu et al. [1982]; Ukkonen [1985]; Myers [1986]; Kumar and Rangan [1987]; Wu

et al. [1990]; Rick [1995, 2000]. All these papers give LCS algorithms for highly

similar strings, running in time O(ne), where e is either the edit distance between

the strings (as shown by Ukkonen [1985]), or a different closely related similarity

measure. High-dissimilarity string comparison has been considered by Hirschberg

[1977]; Rick [1995, 2000]; the best running time for LCS on highly dissimilar strings

is O(np+ n log n). A good survey of parameterized string comparison algorithms is

given by Hirschberg [1997].

The basis of parameterized LCS computation for dissimilar strings is to de-

termine the LCS of two strings as a longest chain of match cells (i1, j1), (i2, j2), . . . ,

(ip, jp) with i1 < i2 < . . . < ip and j1 < j2 < . . . < jp. We define a partial order on

the set of match cells by (i1, j1) ≺ (i2, j2) if and only if i1 < i2 and j1 < j2; further,

we say that (i1, j1) is dominated by (i2, j2). Due to Dilworth [1950], the minimum

number of antichains (sets of pairwise incomparable elements) necessary to cover a

partially ordered set is equal to the length of the longest chain. Therefore, the LCS

of two strings can be obtained by computing a minimal antichain decomposition of

the set of matches under the ≺ ordering. Consider chains ending at a match (i, j).

If any longest such chain has length k, then this match is said to have rank k. If

match (i, j) has rank k and for all other matches (i′, j′) of rank k either i′ ≥ i and

j′ < j or j′ ≥ j and i′ < i, then match (i, j) is called (k-)dominant.

The set of all dominant matches completely specifies the table of prefix-

prefix LCS lengths L(i, j) = LLCS(x1 . . . xi, y1 . . . yj). Let the contours of L be

formed by the rows and columns of cells through which the values of L increase

68

a b

b

a

a

c

c

c

x =

y =

(a) input strings and alignment dag

1

1

1

1 2 3 3

2 2 2

1 2 2

1 1 1

L =

(b) prefix-prefix LCS lengths and contours

Figure 5.1: Parameterized LCS Computation

by one. A cell (̂ı, ̂) belongs to a contour in L if L(̂ı + 1
2 , ̂ + 1

2) > L(̂ı − 1
2 , ̂ + 1

2),

L(̂ı+ 1
2 , ̂+ 1

2) > L(̂ı+ 1
2 , ̂− 1

2), or L(̂ı+ 1
2 , ̂+ 1

2) > L(̂ı− 1
2 , ̂− 1

2). Figure 5.1 (b)

shows an example. All match cells belonging to the same contour form an antichain

in a minimal antichain decomposition, and each contour is specified completely by

the dominant matches on it1.

Since parameterized algorithms process the input match-by-match instead of

computing the entire prefix-prefix LCS score matrix, it is necessary to pre-process

the input strings to obtain lists of match cells. Different approaches exist for this,

depending on the assumptions that can be made about the input alphabet. Gen-

erally, it is necessary to allow less-than/greater-than comparisons in addition to

testing for equality (otherwise, Ω(mn) was shown to be a lower bound, see Aho

et al. [1976]). Based on this assumption, we can obtain a set of match lists which

give for every character c in x the positions i where yi = c in O(n log n) time. These

lists usually allow queries for increasing or decreasing sequences of i-values and are

called occurrence lists or match lists accordingly. The lists are obtained by deter-

mining the inverse sorting permutation for y (i.e. a permutation that transforms a

sequence which contains all characters from y in sorted order into y). For every

character c in x, we can find the head of a list of match positions in time O(log n)

by binary search. For small alphabets, it is possible to pre-process the input in

1These contours are called forward contours by Rick [1995, 2000].

69

time O(n log σ) to obtain a similar representation (see Hirschberg [1977]; Apostolico

[1997] for discussion). We will denote the result of this preprocessing as follows.

Definition 5.1.1. The functions µi : N → [1 : n] ∪ ∞ for i ∈ [1 : m] specify the

match positions. We have for all k ∈ [1 : n− 1]:

• µi(k) = j, j 6=∞⇒ xi = yj ,

• µi(k) < µi(k + 1) or µi(k) = µi(k + 1) =∞.

This notation allows storing the match lists using O(m + n) space. Algo-

rithm 5 shows how to obtain these functions for arbitrary ordered alphabets in time

O(n log n). We can obtain these functions for arbitrary ordered alphabets in time

O(n log n) by sorting one of the input strings and then using binary search to create

the match lists. For small alphabets of size σ < n, the sorting permutation can be

determined in time O(n log σ) by counting character frequencies for all characters

contained in y. After this pre-processing step, we can determine µi(k) in O(1) time

using O(m+ n) storage.

Algorithm 5 Pre-processing x and y to obtain µi

input: strings x and y with |x| = m and |y| = n
output: functions µi with i ∈ [1 : m]

Obtain sorting permutation Y of y {i.e. yY [j] ≤ yY [j+1] with j ∈ [1 : n]}
for i ∈ [1 : m] do

find jmin
i = minj yY [j] = xi and jmax

i = maxj yY [j] = xi
{ by binary search using Y , time O(log n) }

µi(k) =

{
Y [jmin

i + k − 1] if k ∈ [1 : jmax
i − jmin

i + 1]

∞ otherwise.

end for

In this chapter, we develop a new interpretation of standard and semi-local

LCS algorithms, based on a certain class of traditional comparison networks known

as transposition networks. This approach allows us to obtain new algorithms for

sparse semi-local string comparison and for comparison of highly similar and highly

dissimilar strings, as well as semi-local comparison of run-length compressed strings.

The remainder of this chapter is structured as follows. We describe the transposition

70

network method in Section 5.2. We then show new algorithms for sparse semi-

local string comparison in Section 5.3, show how to compare run-length compressed

strings semi-locally in Section 5.4, and discuss comparing highly similar or highly

dissimilar strings in Section 5.5. We finally give a new, transposition-network based

algorithm for highest-score matrix composition in Section 3.7.

5.2 The transposition network method

Comparison networks (see e.g. Cormen et al. [2001]) are a traditional method for

studying oblivious algorithms for sorting sequences of numbers. A comparison net-

work has n inputs and n outputs, which are connected by an arbitrary number of

comparators. A comparator has two inputs and two outputs. It compares the input

values and returns the larger value at a prescribed output, and the smaller value at

the other output. We will draw comparison networks as n wires, where pairs of wires

may be connected by comparators that operate on the values passing through the

wires. Comparators are usually grouped into a sequence of k stages, where each wire

is connected to at most one comparator in a single stage. A comparison network is

called transposition network if all comparators only connect adjacent wires.

Transposition networks allow for another interpretation of the seaweed algo-

rithm. As shown in Figure 5.3, every mismatch cell behaves like a comparator on

the starting points of the seaweeds that enter the cell from the left and the top. The

larger value is returned on the right output, and the smaller value is returned on

the bottom output. For a match cell, the input values are not compared but just

translated top to right and left to bottom. Therefore, we can define a transposition

network for every problem instance as follows.

Definition 5.2.1. The network LCSNET(x, y) has m + n diagonal wires. Every

mismatch cell (̂ı, ̂) corresponds to a comparator in stage ı̂ + ̂ connecting wires

m− ı̂+ ̂ and m− ı̂+ ̂+1 (see Figure 5.3). Match cells do not contain comparators.

71

As comparators in the network correspond to cells in the alignment dag, we

choose the convention of drawing the network wires top left to bottom right. Values

moving through a cell or comparator can therefore move either down or to the right.

The network LCSNET(x, y) realizes the seaweed algorithm. At the begin-

ning, the input values are in inversely sorted order in relation to the direction of the

comparators. As these values pass through the network, they trace the paths of the

seaweed curves in the alignment dag. Note that the direction of the comparators

can be determined arbitrarily, as long as it is opposite to the sorting of the input

sequence. Another degree of freedom when defining transposition networks lies in

the behaviour of comparators for equal inputs. Even though this does not affect the

network output, changing the convention of swapping or not swapping equal values

can simplify specification of non-oblivious algorithms for computing the output of

LCSNET(x, y).

In order to solve the global or semi-local LCS problem for strings x and y

using the transposition network method, we have to define appropriate input values

for LCSNET(x, y). In order to obtain the full set of nonzeros of the implicit highest-

score matrix, the inputs are set to the seaweed starting points: input ̂ + m + 1
2 is

initialized with ̂, ̂ ∈ 〈−m : n〉. Let the vector O denote the output of the network.

If all comparators return the larger input on the bottom output, and the smaller

input on the right output, the pairs (O(̂+m+1
2), ̂+m) with ̂ ∈ 〈−m : n〉 correspond

to the core nonzeros of the corresponding implicit highest-score matrix. Since there

are O(mn) comparators in the transposition network, the resulting algorithm runs

in time O(mn).

Using the transposition network method, we can see the connection between

semi-local string comparison and existing LCS algorithms is the fact that both ap-

proaches compute LCS scores incrementally for prefixes of the input strings. The

standard LCS dynamic programming approach computes LCS lengths, and the sea-

weed algorithm computes implicit highest score matrices for all prefixes of the input

strings. When looking at this relationship in more detail, it becomes clear that

standard LCS algorithms can be obtained by the transposition network method

72

Truth table

Si(j) Ci(j) Si+1(j) Ci+1(j)
0 0 0 0
1 0 1 0
0 1 1 0
1 1 0 1

Truth table

Si(j) Ci(j) Si+1(j) Ci+1(j)
0 0 0 0
1 0 1 0
0 1 1 0
1 1 1 1

Si(j) Si+1(j)

Ci(j + 1)

Ci(j)

+ Si(j) Si+1(j)

Ci(j + 1)

Ci(j)

Figure 5.2: Bit-parallelism through addition in 0-1-transposition networks

using input values of only zero or one. A first direct consequence are bit-parallel

LCS algorithms as given by Crochemore et al. [2001, 2003], which can be obtained

by computing the output of the transposition network cell-column by cell-column

using bit-vector boolean operations and bit-vector addition. Figure 5.2 shows that

the truth tables for a full adder and conditional binary comparison are almost the

same and differ only in one bit value. The mismatching value can be corrected by

Boolean manipulation, obtaining the same algorithm as was given by Crochemore

et al. [2001]. In the remainder of this chapter we will show further examples where

existing algorithms for comparing two strings globally can be derived from trans-

position networks, and discuss generalizing them to semi-local string comparison.

5.3 Sparse semi-local string comparison

We now consider sparse string comparison, i.e. string comparison parameterized

by the number of matches r in the alignment dag. Hunt and Szymanski [1977]

proposed an algorithm for sparse string comparison that computes the LCS of two

input strings in O((r + n) log n) time. An extreme case of this is the comparison of

permutation strings of length n over the alphabet Σ = [1 : n]. In this case, only n

match cells exist. Tiskin [2006] gave an O(n1.5) algorithm for semi-local comparison

73

Figure 5.3: Comparison network of an alignment dag

of permutation strings, and improved this result to O(n log2 n) later (see Tiskin

[2010b]).

Since in sparse string comparison the alignment dag contains few matches,

large rectangular areas of the transposition network have full sets of comparators.

These areas will be denoted as follows.

Definition 5.3.1. Let network DIAMOND(m,n) be defined as an LCSNET net-

work which corresponds to a problem instance with no matches. It therefore contains

a full set of m · n comparators.

We now give a more general sparse semi-local string comparison algorithm pa-

rameterized by the number of matches. We will first show a non-oblivious algorithm

to compute the output of DIAMOND networks efficiently, and then propose a tech-

nique for evaluating a LCSNET network by partitioning it into smaller DIAMOND

networks.

Consider an m′×n′ rectangular area in the alignment dag with only mismatch

cells, and the corresponding DIAMOND(m′, n′) network. Such an area occurs when-

ever two substrings over disjoint character sets are compared. The network consists

74

of a full set of m′×n′ comparators and m′+n′ wires.2 If the first m′ and the follow-

ing n′ wires are initialized with two pre-sorted sequences of numbers, this network

works as a merging network (see Munter [1993]). The problem of merging pre-sorted

sequences can be solved non-obliviously in time O(m′+n′). However, as the inputs

to the DIAMOND network are not necessarily pre-sorted, this is not sufficient.

Theorem 5.3.2. It is possible to compute the outputs of the DIAMOND network

non-obliviously in time O((m′+n′) log(m′+n′)) if the inputs are in arbitrary order.

Additionally, if the sorting permutation of the inputs is known (but the inputs are

still in arbitrary order), the problem can be solved in O(m′ + n′) time, as the factor

of log(m′ + n′) only comes from the initial sorting step.

Proof. To non-obliviously compute the output of DIAMOND(m′, n′), consider the

path that the largest input takes through the network. If the largest input enters the

network on wire j, all comparators it passes will return it as the larger element, which

means that it will reach the leftmost output possible. We then proceed through

the remaining inputs in descending order, determining for every input the leftmost

output it can reach, considering that some outputs have already been occupied by

larger values. Any current value that enters the comparison network on a wire j

that is less than m′ wires ahead of the first free output will be translated to the

first (leftmost) available output. If the current value enters the network more than

m′ wires to the right of the first available output, it can only pass through m′

comparators and will therefore reach output j −m′. The free outputs are indicated

by a Boolean array K, where occupied outputs are marked with a value of true.

Since we proceed through the input values in descending order, this yields the same

output as direct evaluation of the transposition network. The entire algorithm is

shown in Algorithm 6.

2Note that the opposite case of a rectangular area in the alignment dag which only contains
matches is trivially solved in linear time as it corresponds to a transposition network without
comparators.

75

Algorithm 6 Computing the output of DIAMOND(m′, n′)

input: I[1], . . . , I[m′ + n′]
output: O[1], . . . , O[m′ + n′]

let I[L[1]] > I[L[2]] > . . . > I[L[m′ + n′]] { L is the sorting permutation }

for (j ∈ [1 : m′ + n′]) do K[j]← false { K contains the non-free outputs }

β ← 1 { β points to the leftmost free output }

for k = 1, 2, . . .m′ + n′ { I[L[k]] is the next largest element }

if L[k] < β +m′ then { Maximum reaches leftmost free output }

O[β]← I[L[k]] { Translate input value to output }

K[β] = true { Mark output as occupied }

while (K[β]) do β ← β + 1
else { Maximum goes to leftmost output it can reach }

O[L[k]−m′]← I[L[k]] { Translate input value to output }

K[L[k]−m′] = true { Mark output as occupied }

end if

end while

Using Algorithm 6, we obtain an improved algorithm for sparse semi-local

comparison. For simplicity assume that both strings are of length n and (w.l.o.g.)

that n is a power of 2.

Theorem 5.3.3. After pre-processing the input strings for obtaining match lists,

the problem of semi-local string comparison can be solved in O(n
√
r) time.

Proof. We first find the sorting permutations of the input strings. This is possible

in time O((m+n) log min(σ,max(m,n))), similar to obtaining µi in Algorithm 5 on

page 70.

After this pre-processing, we partition the alignment dag into blocks using

a recursive quadtree scheme. Consider processing such a block of size w × w. Let

this block correspond to comparing substrings xk . . . xk+w−1 and yl . . . yl+w−1. As an

input for each such block, we have the sorting permutations of the two corresponding

substrings, the input values for the transposition network corresponding to the block,

and also the sorting permutation for these input values. For each block, we obtain

the output values of its transposition network and their sorting permutation as

follows.

For a w×w block, we can count the number of matches in it in time O(w) by

linear search in the sorting permutations of the corresponding substrings. Whenever

76

we find a block that does not contain any matches, we stop partitioning and use

Algorithm 6 to compute the outputs of the corresponding comparison network.

Otherwise, we continue to partition until we obtain a 1× 1 block that only consists

of a single match.

A 1 × 1 leaf block consisting of a single match can be processed trivially

in constant time. Due to Theorem 5.3.2, we can compute the outputs for a w × w
mismatch block in O(w) time when the sorting permutation is known for the inputs.

The sorting permutation for the root block of the quadtree is known, since the

root of the quadtree corresponds to the full alignment dag, and the inputs to its

transposition network form a sequence sorted in reverse. For all other blocks, we

keep track of the sorting permutation of both its input and output elements. For

every output we can trace the input it came from before executing Algorithm 6 and

therefore know the permutation that was performed by the transposition network

within the block. Knowing this permutation and the sorting permutation of the

inputs allows us to establish the sorting permutation of the outputs in time O(w).

To summarize, given the input values and their sorting permutation for every

leaf block of the quadtree recursion, we can compute the output values and their

sorting permutation in time O(w). All non-leaf blocks are partitioned into four

sub-blocks of size w/2 × w/2. The inputs and their sorting permutation are split

and used to recursively process the sub-blocks. We can then establish the sorting

permutation of the outputs for the entire block in linear time by merging. To

compute the outputs of any intermediate block we therefore need time O(w) in

addition to the time necessary for recursively processing the sub-blocks.

Consider the top log4 r levels of the quadtree. In each subsequent level, the

number of blocks increases by at most a factor of four, and the block size decreases

by a factor of two. Therefore, this part of the quadtree is dominated by level log4 r

which contains at most r blocks, each of size n/
√
r. The total work required on this

part of the tree is therefore O(r · n/√r) = O(n
√
r).

The remaining levels of the quadtree can each have at most r blocks that

still contain matches. The block size in each level still decreases by a factor of two.

77

Therefore, this part of the quadtree is also dominated by level log4 r and requires

the same asymptotic amount of work. The overall time for the algorithm is therefore

bounded by
∑log4 r

j=0 O(n/2j · 4j) +
∑log4 n

j=log4 r+1O(n/2j · r) = O(n
√
r). The resulting

algorithm has running time O(n
√
r), and thus provides a smooth transition between

the dense case (r = n2, running time O(n2)) and the permutation case (r = n,

running time O(n1.5)).

5.4 Semi-local LCS computation for run-length com-

pressed strings

aaa...aaa

a

a

a

bbb...b

... ...

.
.
. ...

Figure 5.4: Alignment dag for run-length compressed strings

Another straightforward application of Algorithm 6 is comparing run-length

compressed strings (see Apostolico et al. [1999]). In this compression method, a run

of repeating characters is encoded by a single character together with the number

of repetitions. A run-length encoded string X = X1X2X3 . . . Xm consists of m

character runs Xj of lengths |Xj |. The length of the full string is therefore m =
∑

j=1...m |Xj |. When constructing the alignment dag for comparing two run-length

compressed strings X = X1X2X3 . . . Xm and Y = Y1Y2Y3 . . . Yn, rectangular areas

without matches occur when character runs in X and Y mismatch. Analogously,

large rectangular areas with containing only match cells occur if the characters do

match (see Figure 5.4). Using the comparison network method and Algorithm 6,

these rectangular areas can be processed in cost proportional to their perimeter.

78

Given two input strings with uncompressed lengthsm and n, and compressed lengths

m and n, this method results in an algorithm for semi-local comparison which has

cost
∑

i∈[1:m],j∈[1:n]O(|Xi| + |Yj |) = O(mn + mn). This is as good as the result

by Bunke and Csirik [1993], additionally solving the more general problem of semi-

local string comparison of run-length compressed strings.

5.5 High similarity and dissimilarity string comparison

In Section 5.3 we described an efficient algorithm for semi-local string comparison,

parameterized by the overall number of matches. We now describe an application of

the transposition network method to designing algorithms that are parameterized

by the LCS length p of the input strings or their LCS distance k = n − p. Such

parametrization provides efficient algorithms when the corresponding parameter is

low, i.e. when the strings are highly dissimilar or highly similar.

In the paper by Hunt and Szymanski [1977], matches are processed row

by row to establish which antichain they belong to. Apostolico and Guerra [1987]

improved this algorithm by avoiding the need to consider non-dominant matches (see

Section 5.1), and changing the order in which the match cells are processed. This

allows us to obtain an algorithm that is parameterized by the length of the LCS.

Further, there have been various extensions to this approach, which improve the

running time by either using different data structures (see Eppstein et al. [1992]) or

narrowing the area in which to search for dominant matches hence giving algorithms

which are efficient both when the LCS of the two strings is long or short (see Rick

[1995]). In this section, we will show how the transposition network method can

be used to match these algorithms for global LCS computation. For semi-local

alignment, we achieve a running time of O(np), which is efficient for dissimilar

strings.

We will now show the connection between the antichain decomposition of

the set of match cells and the transposition network method. Consider an LCSNET

network with the following input values: The first m wires (i.e. the inputs on left

79

hand side of the alignment dag) are initialized with ones, and the following n wires

(i.e. the inputs at the top of the alignment dag) are initialized with zeros. On all

comparators, smaller values are returned at the bottom output. We will refer to

this specific transposition network setup as LCSNET (x, y) with 0/1 inputs. Using

only zeros and ones as inputs to LCSNET(x, y) corresponds to tracing seaweeds

anonymously, only distinguishing between those seaweeds that start at the top and

those seaweeds that start at the left. The 0-1 transposition network approach al-

lows us to understand previous results for parameterized LCS computation in terms

of transposition networks, and helps to extend some of these to semi-local string

comparison.

Corollary 5.5.1. In LCSNET(x, y) with 0/1 inputs as described above, let p be the

number of ones reaching output wires below m+ 1 (i.e. the bottom of the alignment

dag). This number is equal to the number of zeros reaching an output wire above m

(i.e. the right side of the alignment dag), and LLCS(x, y) = p.

Proof. From Theorem 3.5.3, we know that LLCS(x, y) = n − d, where d is the

number of seaweeds that start at the top and end at the bottom of the alignment

dag. The number of zeros ending up at the bottom is therefore equal to d, and the

number of ones ending up at the bottom is equal to n − d = LLCS(x, y). Since

the transposition network outputs a permutation of the input, and since we have n

input zeros, n− d zeros must end up at the right.

We will now look at the behaviour of LCSNET(x, y) with 0/1 inputs in more

detail. In order to be able to trace paths of individual values, we must specify the

behaviour of the comparators for equal input values (note that changing this spec-

ification does not change the output of LCSNET(x, y)). Assume that comparators

in LCSNET(x, y) swap their input values if these are equal. If the alignment dag

contains only mismatch cells and therefore a full set of comparators, all ones move

from the left to the right, and all zeros move from the top to the bottom. When

introducing a match cell and hence removing a comparator, the zero that enters the

match cell at the top is translated to the right, and the value of one entering the

80

match cell at the left is translated to the bottom. We trace these two values fur-

ther: as identical values are swapped by convention, both the one (and equally the

zero) will not change direction of movement and be passed on vertically (horizon-

tally in case of the zero) through all comparators. We will refer to ones which move

downwards and to zeros which move to the right as stray. Stray values only change

direction again when they either encounter a match cell or another stray value. If

two stray values enter the same cell, they leave this cell in the original directions,

the one moving rightwards, and the zero moving downwards. This happens inde-

pendently of whether this cell contains a match: in a match cell, no comparison is

performed, the stray zero is returned at the bottom and the stray one is returned at

the right. In a mismatch cell, the zero is also returned at the bottom since it is the

smaller value. Therefore, two stray values always return to their original direction

of movement when meeting in the same cell. Another observation is that any cell

which has exactly one stray input value must have equal inputs. If such a cell is a

match cell, the stray input value returns to its original direction of movement, and

the other input becomes stray. If the cell does not contain a match, the inputs are

exchanged by convention, and the stray value remains stray. To summarize, stray

values caused by a match cell will start a row (stray zeros) or column (stray ones)

of cells which output stray values. This row or column only ends when meeting

another column or row of cells which output stray values.

Figure 5.5 shows an example of the LCSNET(x, y) with 0/1 inputs for the

problem instance shown in Figure 5.1 on page 69. It seems intuitive from this figure

that the stray zeros and ones trace contours in L.

Theorem 5.5.2. A cell belongs to a contour in the matrix of prefix-prefix LCS

lengths L if and only if it has at least one stray value as an input or output.

Proof. This follows from Corollary 5.5.1 by induction on the number of contours. If

L has no contours, no match cells can exist. If there is exactly one contour in L, all

match cells must belong to this contour, and the contour splits the set of cells into

two parts of mismatch cells. Consider the set of mismatch cells to the top/left of the

contour. All cells in this set have zeros as their top input and ones as their left input

81

11

11

1

1

0 0 0 0

0 0 0

0
1

1

1

1

1

1

1

0

0

1

0

0

1

1

1

1

0

1

0

0

1

0

0

0

0

0

0

1

0

0

1

0

1 1 1 0

Figure 5.5: LCSNET(x, y) with 0/1 inputs

since these are either the input values to the transposition network, or have been

translated through the previous mismatch cells as shown in case (e) of Figure 5.7.

All dominant matches on the contour must have a zero as their top input and a

one as their left input as well, since they must be at the right and below a case (e)

mismatch cell, or equivalently at the top or left of the alignment dag. Dominant

match cells output a stray zero on the right and a stray one on the bottom (see case

(d) in Figure 5.7). Any cell that has a stray zero as its left input and a zero as its top

input must be to the right of a match. As there is only one contour the cell cannot

be below another match and therefore L will increase vertically in this cell since the

prefix-prefix LCS can be extended by the first match to the left. Symmetrically, this

is true for any cell with a stray and a none-stray one as its inputs (see cases (a) and

(b) in Figure 5.7). In the only remaining case, two stray values meet in the same

cell (̂ı, ̂) (case (c) in Figure 5.7). In this case, the prefix-prefix LCS could either

be extended by using the matches above (̂ı, ̂) or by using the matches to the left

of (̂ı, ̂), but not by using both since they are incomparable under the ≺ ordering

(and no path containing one of each of those matches exists in the alignment dag).

Now consider the cells immediately to the right or below the contour. These cells

cannot be to the right or below dominant matches (otherwise they would belong

to the contour). Therefore, these cells must all have non-stray inputs (i.e. a zero

at the top input and a one at the left input), since cells on the horizontal contour

82

0 0 0 0 0 0 0 0 0
1

1

1

1

1

1

1

1

1

Figure 5.6: Comparing highly similar strings

output zeros on the bottom, cells on the vertical contour output ones at the right,

and contour knees output a zero on the bottom and a one at the right output. As

all the cells immediately neighbouring the contour to the right or below must be

mismatch cells (only one contour exists, therefore all match cells are on it), they

all belong to case (e) in Figure 5.7 and in consequence all cells below or to the

right of them as well. Therefore, Theorem 5.5.2 is true in the case where only one

contour exists. Furthermore, all additional contours must either have case (e) cells

on top and to their left, or border directly on another contour. Cell contours output

non-stray values on the right/the bottom if they have non-stray inputs. Therefore,

Theorem 5.5.2 is also true for more than one contour.

Algorithm 7 shows how to compute the output of LCSNET(x, y) with 0/1

inputs. Both cases inside the while loop can occur exactly p times in every row,

as the list of ones moving downwards can maximally have p entries (one for each

antichain). If the operations “find”, “insert” and “delete” are implemented using

binary search trees, all operations on the set Ones would take O(log p) time, giving

83

vertical contour
(b)

contour
knee (c)

dominant
match (d)

1

1 1

1

0

1 1

0

0

1 0

1

horizontal con-
tour (a)

mismatch cell between con-
tours (e)

0

1 1

0

1

1 1

1

0

0

0

0

1

0 1

0

0

1 0

1

Figure 5.7: Interpreting 0-1 transposition network cells and their inputs as contours.

a running time of O(mn log p). Note, however, that all operations have increasing

key values in every row, and that the number of insertion, deletion and search

operations is equal to the number d of dominant match cells. Therefore, finger

searching (see Brodal [2005] for an overview of finger searching and its applications)

and an argument as by Apostolico and Guerra [1987] can be used to obtain a bound

of O(m log n+ d log(mn/d)).

Consider the problem of comparing two strings that are highly similar. Myers

[1986] proposed an algorithm to compare strings in time O(ne), where e is the edit

distance between the strings. The idea behind this algorithm is to incrementally

extend only the longest paths in the alignment dag until the LCS is found. A

similar algorithm can be obtained by using 0-1 transposition networks as follows.

If the two input strings are identical, no comparators exist on the main

diagonal of alignment dag cells, i.e. between transposition network wires m and

m + 1. This means that no ones can get to the right hand side, and no zeros can

get to the bottom of the alignment dag. We can look at this as two streams of

zeros and ones, and do not need to evaluate comparisons within a single stream of

zeros or ones. The only comparators which can possibly swap inputs are the ones

between streams. If a comparator occurs between two streams, the inputs will only

be swapped if the zero is input from the top, i.e. we can restrict our attention to the

84

Algorithm 7 Transposition network based antichain decomposition

input: Match lists µy from preprocessing

output: LLCS p, dominant matches

Ones ← ∅ { ordered list containing positions of ones moving downwards }

for i = 1 . . .m do

j ← 0
left ← 1
while j ≤ n do

if left = 1 then { one moving left to right }

{let find return n+ 1 if no element is found}

find smallest o in Ones with o > j
find smallest m in µi with o > j
j ← m
{ we look for a match cell with a zero coming from the top }

if o > m then

insert j into Ones
report dominant match: (i, j)
left ← 0

end

else { zero moving left to right }

find smallest o in Ones with o > j
if o exists then { zero re-joins top-to-bottom stream }

delete o from Ones
left ← 1
j ← o

else

exit while { zero reaches right hand side }

end if

end if

end while

end for

p← |Ones|

upper boundaries of streams of ones. Figure 5.6 shows an example. The comparators

drawn in black are those between streams of zeros and ones which must swap their

inputs.

Definition 5.5.3. Let a 1-0 boundary in stage s of LCSNET(x, y) with 0/1 inputs

be defined as any location in this stage where two adjacent wires l and l + 1 carry

values one and zero respectively.

Corollary 5.5.4. The number of 1-0 boundaries in any stage of the transposition

network is smaller than k + 1 = n− p+ 1.

85

Proof. By induction: Assume m = n = 1. The transposition network has two wires

which are initialized with a zero and a one. Therefore, the number of 1-0 boundaries

must be less or equal than 1. The LCS distance k can be 0 or 1. Increasing m or

n by one adds another row or column of comparators to the transposition network.

Consider the case of adding a column of comparators (i.e. increasing n by one).

Each 1 which is output at the right hand side can only cause one 1-0 boundary.

Furthermore, ones do not move downwards in comparisons. Therefore, a new 1-0

boundary can only be created if a value of 1 from the left hand side reaches the right

hand side, which means that the number of 1-0 boundaries cannot increase by one in

this case without also increasing k by one. However, k cannot increase by more than

one, since maximally a single value of 1 reaches the right hand side. Symmetrically,

when increasing m by one, we add a row of comparators at the bottom. If we have

k zeros at the bottom, each of these zeros can only be part of a single 1-0 boundary.

We can only gain a single 0 on the bottom by increasing m by one, in which case also

k increases. Therefore k + 1 always dominates the number of 1-0 boundaries.

Using this insight, the LLCS of two strings x and y with |x| = |y| = n can

be computed in time O(nk). This is done by tracing the intersections of the 1-0

boundaries with the 2n − 1 antidiagonals of the alignment dag, as this is the only

place where change can occur. By Corollary 5.5.4, we know a bound for the number

of 1-0 boundaries. At each intersection of a 1-0 boundary with an antidiagonal,

the corresponding characters in x and y must be compared to check whether a

comparator exists. This can be done in constant time, and since there are 2n − 1

antidiagonals we get the claimed running time. Note that this algorithm does not

require any pre-processing to obtain match lists.

Corollary 5.5.5. All dominant matches must be on a 1-0 boundary in the transpo-

sition network.

Proof. This follows immediately from Theorem 5.5.2.

86

Corollary 5.5.5 allows us to narrow down the area in which to search for

dominant matches, and can be used to extend the Algorithm by Apostolico and

Guerra [1987] to achieve running time O(kp), similarly to the one by Rick [1995].

Theorem 5.5.6. The implicit highest-score matrix for comparing two strings of

length n can be computed in time O(np).

Proof. Using the 0-1 transposition network, we are able to determine for every

match cell whether it is dominant or non-dominant, as well as for every mismatch

cell whether it is part of a contour. Looking at this in the more general setting of

semi-local string comparison where we need to trace all seaweeds individually, we can

still see that non-trivial comparisons between seaweeds can only occur when the cell

is actually part of a contour. Cells outside the contours are always mismatch cells

which compare an input originating at the left hand side of the alignment dag to an

input originating at the top of the alignment dag. Therefore all the comparators in

these cells can be replaced by swap operations (i.e. they contain seaweed crossings).

Given all dominant matches on a contour and the values on all transposi-

tion network wires before they intersect the contour, we can compute the values

on all wires of transposition network after the intersection in time which is linear

in the length of the contour. As all comparators between contours perform swap

operations, we can also compute the permutation of values performed between two

contours in time linear in the length of the longer contour.

It is possible to compute the set of all k-dominant matches with k ∈ [1 : p]

in O(np) time. We can use the algorithm by Apostolico and Guerra [1987] for this.3

Knowing the dominant matches in every antichain, we can trace its complete contour

in time linear in its length. No contour can have length l longer than 2n, and there

are exactly p = LLCS(x, y) contours. Further, we can obtain the inputs and outputs

of all cells in a contour of length l in time O(l) with l ≤ 2n. Therefore, the worst

case running time of our algorithm for semi-local string comparison is bounded by

O(np).

3A practical algorithm for computing a list of dominant matches has been described
by Crochemore et al. [2003]

87

Chapter 6

Computing Alignment Plots

Efficiently

In this chapter, we consider the problem of computing alignment

plots, which consists in computing alignment scores for all pairs of win-

dows in two input strings. This problem is relevant in computational

biology for comparing genomic sequences. We will show a new, fast im-

plementation of alignment plot computation and discuss how it is applied

to finding evolutionally conserved regions in various plant genes. We also

compare the running times of our algorithm to other approaches, and

show that it is faster than all other comparable loss-free alignment plot

methods.

6.1 Background

In this chapter, we consider the problem of computing alignment plots, which con-

sists in computing alignment scores for all pairs of windows in two input strings.

These plots are closely related to dot plots, which are a standard method for local

comparison of biological sequences introduced by Gibbs and McIntyre [1970] and

Maizel and Lenk [1981]. When creating a dot plot, a substring to substring distance

is computed for all pairs of fixed-size windows in the input strings. The result can

88

be visualized by a plot showing a dot for each pair of windows that achieves a dis-

tance value below a fixed threshold. Commonly, the Hamming distance (obtained

by comparing the characters in both input strings for every position and counting

the number of mismatches) is used since it can be computed in linear time. Efficient

algorithms for computing such Hamming-filtered dot plots were given e.g. by Maizel

and Lenk [1981] and by Krumsiek et al. [2007]. When comparing two strings of

length m and n, the optimal running time for computing a Hamming-filtered dot

plot is O(mn). However, the computationally most intensive part can be reduced

to O(m log n) using suffix arrays (Krumsiek et al. [2007]).

bba b aabb ba

: inserted gaps

abbabbba bbaba

Figure 6.1: String alignment example

The weakness of the dot plot method is that the Hamming distance is only a

rather crude measure of string similarity. Using a string edit distance or alignment

score (Gusfield [1997]) for dot plot filtering can greatly improve the sensitivity of

the method. The LLCS scores computed by the seaweed algorithm are the simplest

example for such an alignment score: another interpretation of LCS computation is

string alignment (see [Gusfield, 1997, p. 209 ff.]). An alignment of strings x and y is

obtained by putting a subsequence of x into one-to-one correspondence with a (not

necessarily identical) subsequence of y, character by character and respecting the

index order (see Figure 6.1). The corresponding pairs of characters, one from x and

the other from y, are said to be aligned. A character not aligned with a character

of another string is said to be aligned with a gap in that string. Finding the LCS

corresponds to computing a maximum alignment when assigning the scores w= = 1

to aligning a matching pair of characters, w = 0 to inserting a gap, and w 6= = 0 to

aligning two mismatching characters. More general alignments than the LCS can be

89

obtained using the Needleman and Wunsch [1970] algorithm, which allows for gap

penalties as well as different scores for each individual pair of matching/mismatching

characters, forming a pairwise score matrix, or substitution matrix. The seaweed

algorithm can be generalized to score matrices with small rational scores at the price

of a constant factor blow-up of the alignment dag (see Tiskin [2008b]). Practically

used examples of substitution matrices are given by Henikoff and Henikoff [1992] and

Dayhoff et al. [1979]. We will discuss adapting the seaweed method to substitution

matrices slightly more complicated than the LLCS case in Section 6.2.

In the context of biological sequence comparison, this idea has been im-

plemented by Ott et al. [2009], where a sequential algorithm with running time

O(mnw2) is used to compute alignment plots with a fixed window length w. Their

algorithm works by applying the method of Needleman and Wunsch [1970] to each

pair of windows. Furthermore, this algorithm computes bounds on the scores by

reusing scores from overlapping window pairs. These bounds are used to skip those

pairs scoring below a threshold, and to speed up the dynamic programming compu-

tation of the Needleman/Wunsch alignment scores. Using bit-parallel LCS compu-

tation as discussed in Chapter 5 for computing the window scores, a constant factor

speedup can be obtained. Another algorithm which can be adapted to computing

alignment plots is given by Rasmussen et al. [2006]. They give a very fast algorithm

for loss-free local LCS computation which uses q-gram filters. Our method is su-

perior to their algorithm when searching for local similarities with low alignment

scores, since the q-gram method is only effective when restricting the search to win-

dows with more than 90% local similarity (for a window length of 100, this would

mean that we only report window pairs with an LLCS of over 90). While this is

sufficient for many applications in computational biology, in our application (Ott

et al. [2009]; Picot et al. [2010b]), matches of much lower similarity are sought. A

similar argument applies to using tools like BLAST (Altschul et al. [1990]) or more

advanced variations of it like PatternHunter (Ma et al. [2002]): these are heuristic

methods which work very well for finding local alignments of high similarity, but can

be less sensitive when searching for fixed-length local alignments with similarities

90

below 70% (e.g. Ma et al. [2002] studied the sensitivity of their algorithm for a range

of local similarities). Our method does not depend on the local match similarity

at all: we can report all matching window pairs regardless of their alignment score.

A drawback of using the seaweed method in comparison to BLAST is its restric-

tion to alignment scores with simple gap penalties, whereas BLAST allows one to

use generic substitution matrices. Currently, we can overcome this limitation only

by increasing the size of the alignment dag (see [Tiskin, 2010a, Section 3.4] and

Section 6.2), which slows down our computation. In the absence of a theoretical

generalisation, a practical method to use arbitrary alignment scores could consist in

using our algorithm to isolate areas which are of interest for applying more sensitive

and computationally more intensive comparison algorithms.

Figure 6.2: Alignment profile produced by the EARS webservice

Our implementation of alignment plots has been integrated into a webservice

for evolutionary analysis of regulatory sequences (EARS, see Picot et al. [2010b]),

which enables the swift generation of alignment plots for short genetic sequences

of up to 2000 characters. The main biological application for such comparisons is

the computation of conservation profiles for non-coding regions in DNA promoter

fragments (see Picot et al. [2010a], and references therein). Promoter fragments are

areas in DNA which will normally not produce proteins, but rather regulate whether

a certain gene will be expressed (see Alberts et al. [2007] for an introduction to ter-

minology and biological aspects of this application). The analysis of these promoter

fragments is both difficult and of great importance for biologists, as knowledge of

the exact locations of regulatory DNA regions is necessary in order to understand

91

−2000 −1800 −1600 −1400 −1200 −1000 −800 −600 −400 −200 0
−2000

−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

Position in Arabidopsis promoter fragment

P
o
s
it
io

n
 i
n
 R

ic
in

u
s
 p

ro
m

o
te

r
fr

a
g
m

e
n
t

60

62

64

66

68

70

72

74

76

78

Window Similarity (percent)

Conservation Peak

Figure 6.3: Full alignment plot

the complex mechanisms underlying gene expression. Figure 6.2 shows the out-

put of the EARS web tool for comparing the 2000 base-pair promoter sequence of

the AT5G61380 gene in Arabidopsis thaliana (see The Arabidopsis Information Re-

source (TAIR) [2010]) to the promoter sequence of the orthologous gene in Ricinus

communis (castor bean). Figure 6.3 shows the full alignment plot (using a similarity

threshold, requiring at least 55% sequence similarity). We can clearly see a similar-

ity peak in both figures, which identifies a genomic region that is highly conserved

between both species. Picot et al. [2010a] argue that such conservation can be used

to identify areas in the DNA that may contain regulatory elements which can then

be verified experimentally. Furthermore, Picot et al. [2010a] found the alignment

plot method to be more sensitive than e.g. using BLAST or other sequence com-

parison methods in some cases, establishing alignment plot computation as a useful

addition to the set of standard tools for biological sequence analysis.

In this chapter, we will show how to compute alignment plots efficiently in

theory and practice using semi-local string comparison. First, we discuss different

techniques for improving the practicality of the seaweed method, and show different

theoretical approaches to the problem. We then show how to engineer a fast data-

parallel algorithm, running in time O(mn
√
w/γ), using vector operations that work

92

.

MismatchMatch

r cells

s cells

a
a
a

a

$

$

.
.
.

.
.
.

aaaa$ $... ...

b
b
b

b

$

$

.
.
.

.
.
.

aaaa$ $... ...

Figure 6.4: Custom alignment dag for more general substitution matrices

on γ values in parallel. We also show experimental results from an implementation

of this algorithm which uses MMX/SSE instructions (Intel Corporation) for vector

parallelism, and we compare it to an implementation using a graphics processor

(GPU) for the same task. We also show a coarse-grained parallel variant of this

algorithm which uses MPI (Snir et al. [1995]) for running on the cluster systems

at the Centre for Scientific Computing at Warwick (see The University of Warwick

[2009]), and on the Warwick Systems Biology Cluster.

6.2 String alignments with pairwise scores

Longest common subsequences are a more accurate measure for string similarity

than e.g. the Hamming score. However, in practical applications, more general

alignments can be of interest. In this section, we discuss how substitution matrices

with small rational weights can be implemented using a modification to the align-

ment dag, and show how we can implement small gap penalties without affecting

the practicality of our algorithm. Tiskin [2010a] has shown how to apply the sea-

weed algorithm to compute more general alignment scores. To implement this, we

normalize the alignment scores as follows (see also Gusfield et al. [1994]; Rice et al.

[2000]). Assuming that w= 6= 0, we set

w′= = 1, w′6= =
w 6= − 2w

w= − 2w
, and w′ = 0. (6.1)

93

When computing an alignment score h′ using these new weights, we can retrieve the

alignment score h for the original weights as

h = h′ · (w= − 2w) + (m+ n) · w . (6.2)

If all weights involved are rational, we use the following procedure to create an

alignment dag which allows one to compute the alignment scores using the seaweed

algorithm. Let w 6= = s
rw= for two positive integers s and r with s < r. We

create blown-up input strings x′ and y′, where we replace each character α by s ’$’

characters, followed by r − s copies of α (see Figure 6.4). Given LLCS(x′, y′), we

can compute the alignment score h for x and y as h = LLCS(x′,y′)
r .

Example 6.2.1. Consider alignments with match score w= = 1, mismatch score

w 6= = 0 and gap penalty w = −0.5. To compute these alignments, we modify the

input strings by adding a new character ’$’ to the alphabet, which we insert before

every character in both input strings such that e.g. abab transforms into abab.

We can obtain an alignment dag consisting of multiple cells representing a single

match/mismatch as shown in Figure 6.5. For input strings x and y of length m and

n, the alignment score S(x, y) can be retrieved from LLCS of the modified strings

x′ and y′ as

S(x, y) = 0.5 · (LLCS(x′, y′)−m− n), (6.3)

as each mismatch contributes exactly 1 to the LCS and is equivalent to insertion of

a gap. We expect the running time of our algorithm to increase by a factor of four

by this reduction, as both input strings double in size.

MismatchMatch

$

$$

$

a

b

a

a

Figure 6.5: Alignment dag blow-up

94

y

x

Figure 6.6: Seaweeds with a 4-grid

When querying scores from a highest-score matrix for our blown-up input

strings, we are only interested in values with index pairs (i, j) having i mod r =

j mod r = 0. We call r the grid size. For each pair of characters, we have generated

a square of r × r cells in the alignment dag. Longest paths ending in the middle of

such a square do not give a meaningful alignment score; therefore, we do not need

to be able to query their lengths exactly.

Definition 6.2.2. Let A be a highest-score matrix. The r-grid approximate highest-

score matrix Ar is defined as follows. We have Ar(i, j) = A(i, j) if i mod r =

j mod r = 0. Otherwise, we have A(i, j)− r ≤ Ar(i, j) ≤ A(i, j) + r.

Informally, the r-grid approximate highest-score matrix gives exact LCS

lengths only for substrings which align to a grid of r characters. For substrings

which start or end in between grid points, we allow an error of ±r. Highest-score

matrices with an r-grid can be computed using a modified version of the seaweed al-

gorithm. We assign the seaweed start points rounded to the r-grid we defined, which

creates r-bundles of seaweeds that have the same starting point on the top. When

comparing two seaweeds with the same starting point, we allow them to cross, since

the particular relative order of the seaweeds between grid points is not important

for querying scores for substrings that align to the grid. Comparisons of seaweeds

starting within a single grid interval to all seaweeds which start to the left or to

95

the right of this interval have the same result. The order in which the seaweeds

from a single r-bundle arrive at the bottom does not affect the number of seaweeds

dominated by a window which starts at a position k mod r = 0. Looking at the

resulting seaweeds, we get a picture as shown in Figure 6.6.

6.3 Alignment plots

abbabbba bb

bba b aabb ba

LLCS = 7

Figure 6.7: Alignment plot illustration

We are interested in computing WLCS (i, j) for all i ∈ {1, 2, . . . ,m − w},
j ∈ {1, 2, . . . , n − w} (see Figure 6.7). A straightforward method to do this would

be to compute the LCS independently for each pair of windows using dynamic

programming. This method has a worst case running time O(mnw2). We will show

how to improve on this running time by adapting the seaweed method to computing

alignment plots. For computing alignment plots, we do not require random access

to all elements of A(i, j). We will now show how restrictions on the query pattern

allow for a trade-off between storage space and flexibility of queries to A(i, j). We

restrict the range of A(i, j)-values we require by introducing the window length w as

a parameter. For computing alignment plots, we are not interested in longest paths

which are longer than w, since we always query scores for substrings of length ≤ w.

96

w

r

y

x

.

Figure 6.8: A highest-scoring path given by (w, r)-restricted highest-score matrices

Definition 6.3.1. Let A be a highest-score matrix. The w-window restricted

highest-score matrix Aw is defined as follows. We have Aw(i, j) = A(i, j) if j−i ≤ w.

Otherwise, we require that A(i, j) ≤ Aw(i, j) ≤ A(i, j) + (j − i− w).

Informally, the window-restricted highest-score matrix gives the exact LCS

lengths for all substrings of length less than or equal w exactly, and might have

an additive error of up to the substring length minus the window length otherwise.

We can combine this restriction with the r-grid approximate highest-score matrices

from Definition 6.2.2

Definition 6.3.2. Let A be a highest-score matrix. We define the (w, r)-restricted

highest-score matrix Aw,r as the w-window restricted matrix Aw, which is r-grid

approximate.

This restriction on the highest-score matrices allows us to reduce the number

of nonzeros we need to store, and also to reduce the number of bits required to

represent seaweeds.

Proposition 6.3.3. To represent a w-window restricted highest-score matrix im-

plicitly, we only need to store the nonzeros (̂ı, ̂) of the corresponding implicit highest

score matrix, for which ̂− ı̂ < w.

Proof. Straightforward from Theorem 3.5.3 and Definition 6.3.2.

97

Definition 6.3.4. The span of a seaweed is defined as the horizontal distance it

covers in the extended alignment dag. A seaweed corresponding to a nonzero (̂ı, ̂)

has span ̂− ı̂.

Proposition 6.3.5. Consider comparing two strings x and y of lengths m and n.

We can represent the start and end coordinates of a single seaweed in the corre-

sponding (w, r)-restricted highest-score matrix using O(log(w/r)) bits.

Proof. We store the seaweeds in a vector S of size m+n, where each vector element

stores dlog(w/r + 1)e bits. For each nonzero (̂ı, ̂), we have one vector element

S(̂ı + 1/2) = min(2w/r+1 − 1, (̂ − ı̂)/r). Each vector element stores the distance

a seaweed covers. The starting point of each seaweed is equal to its index in the

vector.

It is straightforward to see that we only need O(logw) bits for a vector

element: seaweeds in a (w, r)-restricted highest-score matrix become irrelevant once

their span is larger than w, since the corresponding nonzeros will not affect any LCS

for a substring of length ≤ w (see Theorem 3.5.3). In order to reduce the number of

bits to O(logw/r), we use the fact that we only need to answer LCS queries correctly

if i mod r = j mod r = 0. In this case, the specific permutation induced by running

the seaweed algorithm on the alignment dag is not important for seaweeds starting

within [k : k+r−1] with k mod r = 0. We therefore do not need to distinguish the

individual r seaweeds in each of these groups: once they reach the bottom, we only

need to know their starting position within a window of size r. We can thus divide

the distance values by r, which gives the claimed number of required bits.

Note that an extreme case of computing (w, r)-restricted highest score matri-

ces using the seaweed algorithm gives a bit-parallel algorithm for LCS computation

(see Chapter 5). Given two strings x and y, we set w = max(|x|, |y|) and r = |x|,
and therefore only require a single bit for storing a seaweed. Informally, we only dis-

tinguish between seaweeds starting before and after position 0. This is equivalent to

the algorithm from Crochemore et al. [2001]. Furthermore, Proposition 6.3.5 implies

that the number of bits used to represent a seaweed is not affected by using rational

98

S[j]

Basic algorithm Data-parallel algorithm

T [j]: top input seaweeds

w w w

L[j]: left input seaweeds

Figure 6.9: Seaweeds in a sliding window

score matrices. When using the scoring scheme introduced in Example 6.2.1, it is

sufficient to compute a (w, 2)-restricted highest score matrix.

6.4 A data-parallel alignment plot algorithm using only

vertical vector operations

The seaweed algorithm shown in the last section can be used to compute the LCS

of all pairs of w-windows simultaneously in time O(wn) for two strings of respec-

tive lengths w and n (i.e. one of the strings consists of only one w-window). By

Theorem 3.5.3, the LCS of x and any w-window yi . . . yi+w−1 is computed as the

number of seaweeds starting and ending within the odd half-integer range 〈i : i+w〉.
Intuitively, we can keep track of the LCS length between a sliding w-window in the

one input string and the other string by counting the number of seaweeds that reach

the bottom of the alignment dag. Therefore, our algorithm can compute the LLCS

for all w-windows in a single pass over all columns of cells in the alignment dag.1

We obtain a first improved algorithm for comparing all pairs of w-windows.

1A similar problem was studied by Boasson et al. [2001]. In their paper, the goal is to compute
the number of w-windows in y which contain x as a subsequence. Our algorithm is similar to theirs,
however, it solves the more general problem of computing the LLCS in all w-windows which do not
necessarily contain the complete string x as a subsequence.

99

Theorem 6.4.1. Given two strings x and y of lengths m and n, the LLCS for all

pairs of w-windows between x and y can be computed in time O(mnw).

Proof. We apply the seaweed algorithm for computing the implicit w-restricted

highest-score matrices for y and all substrings of x that have length w. Each appli-

cation of the seaweed algorithm therefore runs on a strip of height w and width n of

the alignment dag corresponding to xi . . . xi+w−1 and y. In each column j, exactly

one new seaweed starts at the top of the alignment dag, and exactly one seaweed

ends at the bottom. We track seaweeds ending within 〈j−w : j〉. We store the start

points of these seaweeds in an array B[k], k ∈ [1 : w]. For each column, we need

to evaluate w cells in the alignment dag according to Algorithm 1. This is possible

in time O(w). The seaweed ending up at the bottom replaces the seaweed in B

which is now ending just outside the w-window. We can then count the number d

of seaweeds which start within 〈j −w : j〉 in time O(w). The LLCS of yj−w+1 . . . yj

and xi . . . xi+w−1 can then be calculated as w − d. In total, we have to process n

columns using time O(w) in every strip. In total, m − w strips exist, therefore we

obtain running time O(mnw).

While this direct application of the seaweed method gives an asymptotic

improvement on the method of computing the LCS independently for every pair

of windows by dynamic programming, it is not necessarily more practical. The

dynamic programming method can exploit the fact that we are only interested in

windows with an alignment score beyond a given threshold. More importantly, the

dynamic programming method allows one to improve performance by introducing a

step size h, and only comparing w-windows starting at positions that are multiples

of h. We now show that our algorithm can be modified to take advantage of these

techniques, and also efficiently parallelised.

A method for obtaining speedup for dynamic programming methods as above

is by using vector instructions. Parallelizing the problem on a coarse-grained level

can be trivially done by distributing the computation of the strips between mul-

tiple processors (see Section 6.7). We are more interested in achieving CPU-level

100

parallelism in this section. A common method to speed up dynamic programming

computation is to use vector instructions to compute multiple entries in the dynamic

programming table in parallel.

A practical example for vector parallelism that is applicable here are In-

tel’s MMX instructions (see Intel Corporation [1999a]). MMX provides instructions

for integer vector arithmetic and comparison. MMX also includes instructions for

performing bit-shifts on multi-byte vectors (PSLLx), comparing individual words in

parallel (PCMPEQx and PCMPGTx), and performing bitwise and/or operations (PAND

and POR). The main difference between the theoretical MP-RAM model of vector

parallelism and the implementation on a specific machine is that the number of

words which can be processed in parallel is limited by the size of the vector that fits

into a register on the machine (e.g. 64 bits for MMX, subdivided into bytes, words,

or double words). We mainly use integer vector parallelism here, although it would

also be possible to implement our algorithm using floating point vector processing

(e.g. using SSE, see Intel Corporation [1999b]).

In the following, we will denote vector variables using capital letters: U is

a vector, and U(j) an individual element. All operations on vectors are performed

element-wise unless specified otherwise. We assume that all elements in the vector

are v-bit values. If an element of a vector has all bits set, then this represents the

value of +∞, having ∞ ≡ 2v − 1.

When carrying out the seaweed algorithm on columns of the alignment dag,

the result of every subsequent cell of the column depends on the result from the cell

above it. To be able to process multiple cells in parallel, we need to process cells

by antidiagonals (see Figure 6.9). We can then use vector operations to implement

each step in the the seaweed algorithm, as each cell can be processed only using

data computed in the previous step.

We would like to track seaweeds only if they are within the w-window of

interest. In order to keep the required value of v as small as possible (and hence

allow a high degree of vector parallelism), we identify seaweeds by the distance

of their starting points to the current column. This distance can be represented

101

using dlog2 2w + 1e bits. We first introduce the operation saturated inc for in-

crementing all elements in a vector unless they are larger than 2w. (i.e. operation

saturated inc(V) yields min(V (k)+1,∞) for each vector element V (k)). Another

common feature vector operation is mask generation. Operation match mask(V,W)

generates a vector which contains the value∞ at all positions k, where V (k) = W (k)

and zero otherwise. We also define a compare/exchange operation (V ′,W ′) ←
sort elemwise(V,W), which exchanges V (k) and W (k) only if V (k) > W (k)

and returns the result as a pair of vectors (V ′,W ′). Finally, we require an op-

eration to exchange vector elements conditionally. We introduce operation V ′ ←
exchange if(V,W,M), which returns vector elements V (k) if M(k) =∞, and W (k)

otherwise. All these functions can be vectorized efficiently using MMX. The imple-

mentation of these functions is shown in Appendix A.

The only part which cannot be vectorized is the maintenance of array B,

which counts the seaweeds that have reached the bottom of the alignment dag.

However, we only used this counting method for simplicity, we can in fact implement

the counting procedures in O(w) space and O(1) time per operation. We look at

the problem as a variant of incremental queries to an implicit highest-score matrix

(see Observation 3.3.6).

Lemma 6.4.2. We can keep track of the number of seaweeds contained within a slid-

ing w-window of the alignment dag in O(w) space and O(1) time for every constant-

size shift of the window.

Proof. We need to show that moving the window by one step requires constant

time. Consider storing two arrays of size w, S and E. If our window starts at

position j, we store the start point of the seaweed ending at j + ı̂ with ı̂ ∈ 〈0 : w〉
in S((j + ı̂ − 1

2) mod w). Furthermore, for all seaweeds ending within the window,

we store the end point of the seaweed starting at j + ı̂ in E((j + ı̂− 1
2) mod w). We

also maintain a count d of seaweeds which have reached the bottom of the window.

Initially, we set the count of seaweeds starting/ending within the window to zero

and we initialize S(i) = E(i) = ⊥ (we use ⊥ to indicate that the starting/ending

position of the corresponding seaweed is outside our window). We can update the

102

1 1

j

j + 1

j + w

j + w + 1

E[j]

1 1

j

j + 1

j + w

j + w + 1

E[j] = ⊥

1 1

j

j + 1

j + w

j + w + 1

1 1

j

j + 1

j + w

j + w + 1

k̂ k̂

(a) Removing a seaweed at the left

(b) Adding a seaweed at the right

Case 1: Seaweed ended within the window ⇒
d← d− 1

Case 2: Seaweed endpoint unknown (must be
outside the window) ⇒ d remains the same

Case 1: New seaweed ends within the window
⇒ d← d+ 1

Case 2: New seaweed ends outside the window
⇒ d remains the same

Figure 6.10: Counting seaweeds in a sliding window

two arrays and the count as follows. When moving the window one step to the

right, we must enter the seaweed reaching the bottom at position j + w + 1
2 into

our arrays, and we can remove the seaweed which starts at position j + 1
2 . For the

new window, we have j′ = j + 1. We update the two arrays at position j mod w as

follows. If S(j+w− 1 mod w) ≥ j, or if E(j mod w) 6= ⊥ (these two conditions are

equivalent), we decrement d. We then set S(j+w−1 mod w) and E(j mod w) to ⊥.

After this, we add the seaweed ending at j +w+ 1
2 by putting its start point k̂ into

S(j +w− 1 mod w), and by writing j +w + 1
2 into E(k̂ − 1

2 mod w) if k̂ > j. Also,

if k̂ > j, we increment d. This procedure keeps track of the number of seaweeds

contained within the window due to the fact that in each step, at most one seaweed

103

can be added to, and at most one seaweed can be removed from inside the window.

Figure 6.10 shows all cases both for adding and removing the seaweeds. We can

show symmetric operations for the case when the window is moved to the left.

The full data-parallel algorithm is shown as Algorithm 8. If the window size

Algorithm 8 Vector-parallel seaweed algorithm

input : strings x and y, step size s
output : the LLCS of all pairs of w-windows in x and y.

let P,L, T, C be vectors of size |x|

set P (k) = xk + 1 for k ∈ [1 : w] { translate pattern into vector }

set E(i) = ⊥ for i ∈ [1 : w]
set d = 0

for i = 1 . . .m− w (using step size s)
set C(k) = 0 { zero matches all characters }

T (k) =∞, L(k) =∞ for k ∈ [1 : w]
B(k) = ∅

for j = 1 . . . n+ w
L← saturated inc(L) ; T ← saturated inc(T)
C ← C�v; C[1]← y[j] + 1 { get the next character in y }

let M = match mask(C,P) { generate match mask }

(T ′, L′)← sort elemwise(T, L) { sort distance pairs in mismatch cells }

T ← exchange if(T ′, L,M) { exchange distances in match cells }

L← exchange if(L′, T,M)
{ can we remove a seaweed that was contained in the window? }

if E(j − w mod w) 6= ⊥ then

d← d+ 1
E(T (w) + j − w mod w) = ⊥
{ a new seaweed reached the bottom }

if T (w) < w then

E(T (w) + j − w mod w) = j
d← d+ 1
T ← T�v; T (1)← 0 { move top inputs down by one }

WLCS (i, j)← w − d
end for

end for

is large, the degree of vector parallelism in the algorithm can be further increased

by introducing a horizontal step size h and computing an implicit (w, hr)-restricted

highest-score matrix. When using MMX, we need to minimize the number of bits

per vector element to allow using MMX instructions with the greatest degree of

104

vector parallelism. This will still be relevant when using SSE4, but less so on

newer vector architectures like Larrabee (Seiler et al. [2009]; Abrash [2009]), which

allow for larger-scale vector parallelism on 32-bit integer elements, similar to GPU

computing. Apart from the higher degree of vector parallelism, we further save time

by computing the implicit (w, hr)-restricted highest-score matrix, since we then only

need to increment the vectors L and T in Algorithm 8 every hr steps.

Another feature of the algorithm shown in this section is that it only uses

vertical vector operations, i.e. operations which are carried out separately on each

vector element. Although newer versions of MMX also include horizontal operations

which combine adjacent elements in a single vector, using vertical operations is more

efficient and allows for the highest degree of vector parallelism on this platform.

6.5 A data-parallel alignment plot algorithm for graph-

ics processors

In the previous section, we described an algorithm for computing alignment plots

using vertical vector parallelism. This type of vector parallelism is well suited for

implementation using the vector extensions on traditional processors. Graphics pro-

cessors (GPUs) give a different approach to vector programming, which allows for a

more flexible way to define vector operations. We use the ATI/AMD Brook+ com-

piler (Advanced Micro Devices Inc. [2010]), which has a very similar programming

concept to OpenCL2, the recently agreed standard for GPU programming (Khronos

Group [2010]). Operations for each vector element can be defined in a high-level

programming language. Brook+ differentiates between horizontal and vertical oper-

ations by defining vectors (or matrices) as data streams. Normally, such data streams

have elements that are processed independently, i.e. each vector operation accesses

exactly one stream element at the same time. However, data streams can also be

used for random access, in which case they are called gather/scatter streams. An

operation on such streams is then carried out in parallel by many simple processing

2The work in this thesis is based on Brook+ rather than OpenCL since at the time of imple-
menting our algorithms, no implementation of OpenCL was available.

105

GPU MemoryMain Memory

Bus

. . .

Thread processors

Cache Memory

CPU cores

. . .1 2

CPU

Figure 6.11: CPU and GPU as BSP computers with external memory

units, which allows more flexibility compared to SIMD-style vector programming.

These processing units are named differently by the two main manufacturers of

GPUs, they are called thread processors by ATI/AMD, see [Advanced Micro Devices

Inc., 2010], and stream processors by NVidia, see [NVIDIA Corporation, 2009].

In this section, we show a vector parallel algorithm developed using the ATI

Brook+ compiler. The algorithm is suitable for implementation on different types

of graphics processors. The basis of this method is again the seaweed algorithm,

however, without adaptation to vertical vector operations (in fact, the algorithm

using only vertical operations did not perform well on a GPU in practice). We

will deviate in this section from the convention of showing generic pseudocode and

instead discuss the actual implementation. The algorithm itself has been discussed

in Chapters 3 (page 27) and 5 (Section 5.2, see page 71). In this section, we will

show the modifications that are necessary for the algorithm to perform well on a

GPU.

We will first introduce the basic concepts of GPU programming, aiming for

a generic description on an algorithmic rather than code level. A computer with

a GPU can be modelled as two connected BSP computers with external memory.

Both a multi-core CPU and the GPU can access the main memory of the system

by means of a communication bus. The CPU can initiate data transfers from the

main memory of the system into the GPU’s dedicated memory. The CPU also

controls the execution of code on the GPU in superstep-style. The code for each

thread processor on the GPU is specified in form of a computational kernel. We

106

can assume for our purposes that each processor on the GPU will execute the same

kernel code on different items of data, which it reads from the GPU memory. In

many problems, it is important to balance the number of computations and the

number of memory access operations for efficient GPU-based parallelisation. In

GPU programming, usually a different terminology from regular parallel computing

is applied: we measure the maximum throughput of a computational kernel, and look

at its main limiting factors. A GPU has a theoretical maximum throughput, which

is calculated as the maximum number of elements that can be processed per second

if each processor is able to read its input data utilizing the full memory bandwidth.

The maximum throughput of an algorithm can be limited by memory access. This

can happen if multiple processors read and write the same item of data, or if data

access patterns have not been implemented to access data in the most efficient order

for caching and prefetching in order to hide the memory access latency. Theoretical

models for describing this kind of coalesced memory access were studied by Ha et al.

[2008] and its practical implications are discussed in many GPU programming code

samples, see NVIDIA Corporation [2010]. Notice that thread processors do not

have direct access to the system’s main memory, or CPU caches. The memory of

the GPU is organized in form of vectors or matrices which are called streams. A

kernel computation specifies which elements of such a vector or matrix need to be

read, how they will be combined, and which elements will be written. Execution

of such a kernel on a stream is equivalent to executing a single superstep on our

coupled BSP computer.

We will show examples in this section that are given in C++ with AMD’s

Brook+ extensions (Advanced Micro Devices Inc. [2010]; Buck et al. [2004]).3 In

Brook+, the programmer specifies computational kernels which will run on the GPU

as functions which take streams as parameters. The main deviation of Brook+ from

the C++ standard is that it includes additional functionality for specifying which

data resides on the GPU, and how it is accessed. It differentiates two types of

streams:

3This is very similar to the new OpenCL standard, but allows simpler presentation of our
methods.

107

• The definition of int p<> declares a vector, which is accessed in a vertical

fashion, i.e. each call to the kernel function works on exactly one element

in p.

• [in|out] int o[] declares a vector, which can be accessed randomly by the

kernel. The keywords in and out specify whether the vector can only be read

or also be written by the kernel. In Brook+, these types of streams are named

gather and scatter streams.

A single kernel can work on multiple streams at the same time. Kernel function

calls are allocated to physical thread processors automatically by a scheduler. In

each call to a kernel function, the location of the current data items can be queried

using the instance() function. This function returns the indices of the data el-

ements processed by the current call for all streams declared using <>. Data can

be written to and read from GPU memory using the functions streamRead() and

streamWrite().

We will now show a simple example for GPU computation. We show how to

implement an algorithm for inverting a permutation which is stored as an array of

integers.

Example 6.5.1 (Inverting a permutation). We can store a permutation as a 1-

dimensional stream on the GPU. The CPU can copy permutation data to the GPU

memory first, and then call the following kernel on the stream.

// GPU code

kernel void invert_permutation(int p<>, out int o[]) {

int idx = instance ().x;

o[p] = idx;

}

// [simplified] CPU code

void invert(int n, int * permutation) {

// this corresponds to memory on the GPU

int gpu_permutation_in <n>;

int gpu_permutation_out <n>;

108

// copy data over to GPU

streamRead(gpu_permutation_in , permutation);

invert_permutation(

gpu_permutation_in ,

gpu_permutation_out);

// copy result back

streamWrite(gpu_permutation_out , permutation);

}

5

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Stage 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

5

6

7

8

4

1

2

3

6

7

8

4

1

2

3

5

6

7

8

4

1

2

3

5

6

7

8

4

1

2

3

5

6

7

8

4

Figure 6.12: Transposition network evaluation by stages

We implement the seaweed algorithm in the same form as shown in Chapter 5

by using a transposition network. We start with a transposition network LCSNET

as in Definition 5.2.1 on page 71. For two strings x and y, network LCSNET(x, y)

has |x|+ |y| wires. Its input for semi-local string comparison is the reverse identity

permutation, and from its output we get the nonzeros in the highest-score matrix of x

and y. The network LCSNET(x, y) can be decomposed into |x|+|y|−1 stages, which

have independent comparisons. These stages are equivalent to the antidiagonals of

alignment dag cells processed in the last section. However, in the transposition

network view, we only work on one vector of values, which is given by the numbers

on the wires of the transposition network between stages. Figure 6.12 shows an

example for the transposition network approach, where x = acbc and y = abca

(the network has been rotated by 45 degrees for better visibility of the intermediate

109

results). The red numbers indicate the value on each wire, after every stage. The

input of the network is the reverse identity permutation, and the output of the

network is the inverse of the seaweed permutation (see Section 3.6). The kernel for

evaluating a transposition network is shown in Listing 6.1, the corresponding CPU

code is shown in Listing 6.2.

Listing 6.1: Comparison network evaluation GPU kernel

kernel void compnet_stage(

Variables x and y point to the input sequences in GPU memory.

char x[], char y[],

The following parameters give the intersection of the current stage in the comparison

network with the alignment dag. Variable offset gives the distance of the first

comparator from the first wire, len gives the number of alignment dag cells we

process. Variables x start and y end give the offsets into the input strings.

int offset , int len ,

int x_start , int y_end ,

We declare the input and output permutations p and o. We need random access to

p since we will want to compare two adjacent values for each cell with a comparator.

The output is computed independently for each element.

int p[], out int o <>) {

int idx = instance ().x;

We process the output stream vertically, so we check whether there is actually

anything to do for this particular cell. This might cause a few kernel calls which

do nothing where stages have a small intersection with the alignment dag, but this

doesn’t seem to hurt performance – the kernel only carries out a few comparisons

and copies the data from the input to the output stream. In fact, experiments

showed that restricting the range of the output streams on which the kernel is run

before calling the kernel code causes more overhead than this approach.

if(idx >= offset && idx < offset+len) {

110

We now have to compute the locations of the characters corresponding to the current

alignment dag cell, and determine whether it is a match cell.

int idxd2 = (len - idx+offset - 1) >> 1;

int match =

((int)x[x_start + idxd2] == (int)y[y_end - idxd2]);

int minmax = ((idx -offset) & 1) == 0 ? 1 : 0;

Here, we carry out an individual alignment dag cell operation. If we have a match,

no values exchange places, and we can copy the value to the same output wire.

if(match != 0) {

o = p[idx];

} else {

If the characters do not match, we need to compare the values on two adjacent wires

(this is the reason why we needed to declare p as a gather stream).

int idx_min = ((idx -offset) & ~1) + offset;

int idx_max = ((idx -offset) & ~1) + offset + 1;

if (minmax == 0) {

o = min(p[idx_min], p[idx_max]);

} else {

o = max(p[idx_min], p[idx_max]);

}

}

} else {

o = p[idx];

}

}

Each individual kernel call processes one alignment dag cell. The kernels are

called by the following piece of CPU code.

Listing 6.2: Comparison network evaluation CPU code

void GPUSemiLocal(

111

The function gets the input sequences, their lengths and the input seaweed per-

mutation as parameters. The input seaweed permutation can either be the reverse

identity permutation if we want to compute the seaweed permutation for x and y,

or any valid inverse seaweed permutation when comparing strings incrementally.

const char * x, const char * y,

unsigned int m, unsigned int n,

int * permutation) {

We initialize x stream and y stream as copies of x and y in GPU memory. We also

create two streams which will alternate in storing the output data between stages.

char x_stream <m>, y_stream <n>;

streamRead(x_stream , x);

streamRead(y_stream , y);

int p_stream <m+n> [2];

streamRead(p_stream [0], permutation)

int _in = 0, _out = 1;

The following values give the boundaries of the area in the alignment dag that is

relevant for the current stage in the transposition network.

int mid = m; int h = 1;

int x_start = 0; int y_end = 0;

We execute m + n− 1 stages in the network.

for (unsigned int j = 1; j < m+n; ++j) {

int offset = mid -h;

int len = 2*h;

Here, we schedule the kernel operations on the cells in the alignment dag. Notice

that the call to compnet stage is asynchronous and will return immediately. This

way, cells will be processed as soon as both their inputs and a thread processor are

available. When thinking about our algorithm in the BSP model, all kernel calls

between calls of streamRead and streamWrite correspond to a single superstep

that is executed on the GPU and CPU in parallel. Synchronization between GPU

and CPU is performed implicitly once we try to copy result data back to the main

112

memory. Synchronization occurs on the GPU if a compute kernel call cannot be

scheduled because it is still waiting either for a previous call to finish or for data to

arrive from the main memory.

compnet_stage(x_stream , y_stream ,

offset , len , x_start , y_end ,

p_stream[_in], p_stream[_out]);

We now exchange input and output pointers for the next stage, and compute the

new offsets.
In the first triangle of the comparison network, the height of the

stage increases, and we move one step forward in string y.

swap(_in , _out);

if (j < m && j < n) {

h+= 1; y_end+= 1;

If m > n, we get an area in the middle of the network where h = n.

We compare the entire string y to a sliding window in x.

} else if(j < m && j >= n) {

mid -= 1; x_start += 1;

Symmetrically, if m < n, we get an area in the middle of the network

where h = m and where we compare the entire string x to a sliding

window in y.

} else if(j < n && j >= m) {

mid+= 1; y_end+= 1;

113

Finally, in the last stages of the comparison network, the length of

the stages will decrease, and we move forward in x.

} else { // j >= m && j >= n

h-= 1; x_start += 1;

}

}

In the final step of our algorithm, we need to invert the output permutation, since

the transposition network computes the inverse seaweed permutation.

swap(_in , _out);

invert_permutation (* p_stream[_in], *p_stream[_out]);

}

The GPU implementation shown above did not perform as well as the algo-

rithm from the previous section. The main issue is that it does not allow for using

vector processing on large enough chunks of the data, which causes the overhead for

scheduling computations on thread processors to become dominant in the running

time. A simple workaround for this problem is to use the GPU to compare one long

string y to multiple short strings x1, . . . , xk at the same time. An adapted kernel is

shown in Listing 6.3.

Listing 6.3: Comparison network evaluation for multiple strings

kernel void compnet_stage_2d (

char x[][], char y[],

int offset , int len , int x_start , int y_end ,

int p[][], out int o<>) {

int idx = instance ().y;

int idy = instance ().x;

if(idx >= offset && idx < offset+len) {

int idxd2 = (len - idx+offset - 1) >> 1;

int c_x = (int)x[idy][x_start + idxd2];

int c_y = (int)y[y_end - idxd2];

int match = (c_x == c_y) ? 1 : 0;

114

int minmax = ((idx -offset) & 1) == 0 ? 1 : 0;

if(match == 0) {

int idx_min = ((idx -offset) & ~1) + offset;

int idx_max = idx_min + 1;

int val_l = p[idx_min][idy];

int val_t = p[idx_max][idy];

if(minmax == 0) {

o = min(val_l , val_t);

} else {

o = max(val_l , val_t);

}

} else {

o = p[idx][idy];

}

} else {

o = p[idx][idy]; } }

The main lessons learned from implementing the seaweed algorithm on a GPU can be

summarized as follows. The algorithm using only vertical vector operations turned

out to be unsuitable for GPU implementation, since it creates too much overhead

when implemented using the Brook+ instructions. Direct implementation of the

transposition network method gave better results, in particular when scheduling the

computation of multiple strips in the alignment dag in parallel to take advantage

of large numbers of thread processors. The main difference between SIMD vector

parallelism on a CPU and a GPU is the degree of vector parallelism that is possible,

and the higher degree of flexibility in implementing it. The number of data items

a CPU can process in parallel is restricted to 8 or 16, depending on the instruction

set used. On the other hand, the CPU has a more elaborate setup with data

caches and pipelines, which makes it easier to achieve good data throughput. On a

GPU, we can easily have hundreds or thousands of (simple) thread processing units,

which can execute code in parallel. However, the parallelism offered by these units

can only be exploited by careful algorithm implementation, since otherwise data

115

sharing and memory access bandwidth can become bottlenecks which slow down

the computation. Furthermore, smaller computations must be bundled to make

best use of the scheduling mechanisms. We will show a summary of experimental

results in Section 6.8.

6.6 Reducing redundant computation for small window

sizes

Although the vector-parallel algorithms have a reduced dependency on the win-

dow size, they still have an asymptotic running time that is worse compared to

the best theoretical method, which runs in time O(mn). Tiskin [2008b] suggests

a tree approach to avoid recomputing all seaweeds in each strip of height w. Im-

plicit highest-score matrices are computed for strips of height 2l, l ∈ 1 . . . log2w, and

merged using a sub-quadratic highest-score matrix composition procedure. However,

this procedure potentially has a high computational overhead, and requires imple-

menting the complicated highest-score matrix multiplication procedures shown in

Chapter 4. Therefore, obtaining a practical advantage from using this method is

not likely for small window sizes.

Here, we propose a more practical improvement to the vector-parallel algo-

rithm that reduces amount of overlapping computation. The seaweeds corresponding

to multiple w-windows in one input string can be computed by extending a smaller

strip of seaweeds at the top and at the bottom (see Figure 6.13). In order to imple-

ment such an overlap method, we need to update a highest-score matrix in the two

cases when a character is inserted either at the beginning or at the end of one of the

input strings. The case of inserting a character at the end is trivial: we append a

row of cells in the alignment dag and execute the seaweed algorithm on it. However,

in order to compute the seaweeds resulting from appending a row at the top of the

alignment dag requires a slight modification of the seaweed algorithm.

116

n

w w + 1

Figure 6.13: Using strip overlap to speed up computation

y
x i− 1

j

yx n− j

n− i + 1

A(i, j) Ā(n− j + 1, n− i + 1)

Figure 6.14: Highest-scoring paths for reversals of input strings

a b c a

a

c

b

c 1

2

3

4

5 6 7 8

1 2 3 4

5

6

7

8

abca

a

c

b

c

1

2

3

4

5 6 7 8

1 2 3 4

5

6

7

8

Seaweed permutation:
{ 1, 4, 6, 3, 2, 8, 7, 5 }
Reverse permutation:
{ 5, 7, 8, 2, 3, 6, 4, 1 }
Inverse of reverse:
{ 8, 4, 5, 7, 1, 6, 2, 3 }
Reverse of inverse of reverse:
{ 3, 2, 6, 1, 7, 5, 4, 8 }

Seaweed permutation:
{ 3, 2, 6, 1, 7, 5, 4, 8 }
Reverse permutation:
{ 8, 4, 5, 7, 1, 6, 2, 3 }
Inverse of reverse:
{ 5, 7, 8, 2, 3, 6, 4, 1 }
Reverse of inverse of reverse:
{ 1, 4, 6, 3, 2, 8, 7, 5 }

Figure 6.15: Example for Lemma 6.6.1

117

Lemma 6.6.1. Consider the implicit highest-score matrix Ā for comparing the re-

versals of both input strings. We can obtain the reverse seaweed permutation Ā as

the inverse of the reverse seaweed permutation of A.

Proof. From the definition of the extended alignment dag, and the fact that the

extended alignment dag Gx̄,∗ȳ∗ is the horizontal and vertical mirror image of Gx,∗y∗,

we get A(i, j) = Ā(n− j+ 1, n− i+ 1), since any path that is longest between v0,i−1

and vm,j in the alignment dag corresponding to A will contain the same (reversed)

edges as a highest-scoring path between vertices v̄0,n−j+1 and v̄m,n−i+1 in Gx̄,∗ȳ∗

corresponding to Ā (see Figure 6.14).

A(i, j) = Ā(n− j, n− i)

= n− i+ 1− n+ j − 1−
∑

ı̂>n−j+1, ̂<n−i+1

P̄A(̂ı, ̂)

= j − i−
∑

ı̂>i, ̂<j

PA(̂ı, ̂) (6.4)

Therefore, we have

∑

ı̂′>n−j+1, ̂′<n−i+1

P̄A(̂ı′, ̂′) =
∑

ı̂>i, ̂<j

PA(̂ı, ̂). (6.5)

We substitute ı̂′ = n+ 1− ̂ and ̂′ = n+ 1− ı̂ (this accounts for the two sequence

reversals), and transpose P̄A to obtain:

∑

ı̂>i, ̂<j

P̄ TA (n+ 1− ı̂, n+ 1− ̂′) =
∑

ı̂>i, ̂<j

PA(̂ı, ̂). (6.6)

Since both PA and P̄A are permutation matrices, and since (6.6) has to hold for

all (i, j) ∈ [−∞ : ∞] × [−∞ : ∞], we have PA(̂ı, ̂) = P̄ TA (n + 1 − ı̂, n + 1 − ̂′).
Transposing a permutation matrix is equivalent to finding the inverse permutation,

while transforming ı̂ to n + 1 − ı̂ and ̂ to n + 1 − ̂ is equivalent to reversing the

permutation.

118

An example for Lemma 6.6.1 is shown in Figure 6.15. As a result of this

lemma, we can compute seaweeds incrementally by adding characters in the begin-

ning as well as to the end of an input string. When adding a single character, the

resulting implicit highest-score matrix can be computed in linear time.

Lemma 6.6.2. Given the implicit highest-score matrix PA for strings x and y of

lengths m and n, and a character σ, we can compute the implicit highest-score matrix

for comparing σx to y in time O(m+ n).

Proof. We can compute the reverse and inverse of a (m+n)-permutation in O(m+n)

time and space, and therefore obtain the implicit highest-score matrix for comparing

x̄ and ȳ. Using the seaweed algorithm, we can compute the implicit highest-score

matrix for x̄σ compared to ȳ. By applying Lemma 6.6.1 again, we obtain the implicit

highest score matrix for comparing σx and y.

Theorem 6.6.3. The alignment plot with window size w for two input strings x

and y of lengths m and n can be computed in time O(mn
√
w).

Proof. Lemma 6.6.2 allows us to re-use the common part of two or more strips of

height w in the alignment dag. Using the original O(mnw) method, we need to

evaluate mnw cells to obtain all window scores. We now compute k adjacent strips

starting with the part of the alignment dag in which they all overlap. These k strips

cover a substring of length w + k − 1 in x. Their overlap in the alignment dag is

of height w − k. We first obtain k/2 implicit highest-score matrices by extending

the strip of overlapping cells to the bottom. Each of these highest score matrices

needs to be extended upwards to obtain a full strip of height w (see Figure 6.16).

To compute the seaweeds for k strips, we now have work

c(k) = n(w − k)︸ ︷︷ ︸
overlapping cells

+ n · (k − 1 + 1)︸ ︷︷ ︸
extend downwards

+n
k−1∑

j=1

(k − 1− j)
︸ ︷︷ ︸

extend upwards

.

119

n

w

w − k + 1Overlapping area

k − 1

Step 1

Step 2

k − 1

Step 3

Extending downwards

Extending upwards

Figure 6.16: Computing seaweeds for k overlapping strips

120

n

w
1

2

p

. . .

Figure 6.17: Distributing strip computations

The total number of cells we need to process is

t(k) = c(k) · m
k

.

We can compute the minimum number of cells by minimizing c(k) · mk . When using

k = 2
√

2w + 2, we get

t(k) = mn

(
2

w√
2w + 2

+
1

2
(
√

2w + 2− 1)− 2

)

and therefore asymptotic running time O(mn
√
w).

The optimal value of k to actually use in a computation should be determined

experimentally, since this also accounts for the overhead incurred by having to copy

and invert the permutations.

6.7 A coarse-grained parallel algorithm

Parallelizing alignment plot computation on a coarse-grained level is straightforward.

Assume we have a BSP computer with p processors. We broadcast one of the

input sequences to all nodes, and split the other one into p substrings of equal size.

121

The computation on these substrings can then be performed in parallel, and the

resulting scores can be translated to scores for the original problem by adding an

offset to each window position. An illustration is shown in Figure 6.17. We obtain

parallel running time W (m,n,w, p) = O(mnwp), communication H(m,n,w, p) =

O(mp), synchronization S = O(1) and memory M(m,n,w, p) = O(n + m
p). We can

also distribute the computation using the overlap method from Section 6.6 in the

same way to obtain parallel running time W (m,n,w, p) = O(mn
√
w

p).

6.8 Experimental results

In order to evaluate the performance of our method, we have implemented the

algorithms from the previous sections. The implementation uses C++ with In-

tel MMX/SSE instructions for performing vector arithmetic (see Appendix A). We

compare an optimized implementation of the seaweed algorithm for Intel proces-

sors, and an implementation running on graphics processors by AMD/ATI (see Ad-

vanced Micro Devices Inc. [2010]). The algorithms were implemented using C++

and optimized assembly code, and using the Brook+ compiler supplied by AMD for

implementing the GPU code discussed in Section 6.5. Experiments with the GPU

code took place on a Windows-PC (32-bit) with a 2.4 GHz Core2-Quad processor

and 4GB of RAM. The graphics processor used in our test is an AMD/ATI Radeon

HD 4870 card with 512 megabytes of memory. We also evaluated the performance

of the coarse-grained parallel version of the code on 64-bit Linux systems using MPI

and TBB (Intel Corporation [2009]).

As input data for our tests, we used different biological sequence data sets

and a fixed window size of 100. The nature of the sequences does not affect the

running time of our algorithm, but may affect the impact of the heuristic speedup

employed by one of the methods to which we compare the performance results. In

all experiments, we used a vertical step size of 5, i.e. we only compare every fifth

window in the first input to all windows in the other string. Using the scoring scheme

122

Table 6.1: Execution times in seconds and speedups

Data Set Mikey Berti Jimmy Henry
Input Size 2712×628 2712×2305 15097×96901 80001×80001

Data-parallel algorithm speedup on Linux/x86 64/1.83GHz Core2-duo, gcc 4.3.1

Heur 5.1 (÷ 1.0) 41.1 (÷ 1.0) 2677 (÷ 1.0) 11708 (÷ 1.0)

BLCS 3.6 (÷ 1.4) 37.3 (÷ 1.1) 3680 (÷ 0.7) 16191 (÷ 0.7)

Sea-16 1.4 (÷ 3.6) 10.8 (÷ 3.8) 1026 (÷ 2.6) 4514 (÷ 2.6)

Sea-8 0.5 (÷ 10.2) 3.8 (÷ 10.8) 368 (÷ 7.3) 1614 (÷ 7.3)

Sea-8SMP 0.3 (÷ 17.0) 3.4 (÷ 12.1) 210 (÷ 12.7) 821 (÷ 14.3)

Table 6.2: Execution times in seconds using overlapping strips and a GPU

Data Set Berti Jimmy Henry
Input Size 2712×2305 15097×96901 80001×80001

NW-Align 40 2571 11708
Sea-nonoverlap-cpu (k = 1) 5.8 554 2410
Sea-nonoverlap-gpu (k = 1) 5.1 422 1759
Sea-overlap-gpu (k = 4) 4.8 381 1596

Table 6.3: Execution times in seconds and speedups for the MPI Version (Sea-8)

Data Set Mikey Berti Jimmy Henry
Input Size 2712×628 2712×2305 15097×96901 80001×80001

Linux desktop system, Core2-quad 2.66GHz, 64-bit, MPI, gcc 4.3.1
1 core 0.4 (÷ 1.0) 2.9 (÷ 1.0) 271 (÷ 1.0) 1199 (÷ 1.0)
2 cores 0.7 (÷ 0.6) 1.8 (÷ 1.6) 142 (÷ 1.9) 611 (÷ 2.0)
4 cores 0.7 (÷ 0.6) 1.3 (÷ 2.2) 70 (÷ 3.9) 307 (÷ 3.9)
Apple Mac Pro task farm, 2×dual-core Xeon 3GHz per node, 32-bit
1 core 2.7 (÷ 1.0) 9.7 (÷ 1.0) 821 (÷ 1.0) 3771 (÷ 1.0)
4 cores 1.5 (÷ 1.8) 3.6 (÷ 2.7) 243 (÷ 3.4) 1061 (÷ 3.6)
8 cores 2.0 (÷ 1.4) 2.8 (÷ 3.5) 150 (÷ 5.6) 666 (÷ 5.7)
16 cores 2.4 (÷ 1.1) 3.4 (÷ 2.9) 94 (÷ 8.7) 392 (÷ 9.6)
32 cores 2.0 (÷ 1.4) 3.7 (÷ 2.6) 55 (÷ 14.8) 227 (÷ 16.6)
IBM Cluster, 2×dual-core Xeon 3GHz/node, QLogic InfiniPath network, gcc 4.1.2
1 core 0.67 (÷ 1.0) 3.1 (÷ 1.0) 225 (÷ 1.0) 991 (÷ 1.0)
4 cores 0.57 (÷ 1.2) 1.4 (÷ 2.2) 58 (÷ 3.9) 251 (÷ 3.9)
8 cores 0.60 (÷ 1.1) 1.2 (÷ 2.6) 31 (÷ 7.4) 129 (÷ 7.7)
16 cores 1.26 (÷ 0.5) 1.6 (÷ 1.9) 20 (÷ 11.5) 66 (÷ 14.9)
32 cores – – 12 (÷ 19.1) 41 (÷ 24.0)
64 cores – – 11 (÷ 20.5) 23 (÷ 42.4)

123

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
pe

ed
up

String length

32-bit Windows
64-bit Linux

Figure 6.18: Speedup of bit-parallel LCS computation over dynamic programming

as described in Example 6.2.1 induces a window size of 200 due to the constant-size

blowup of the alignment dag.

For comparing the results to existing methods, we implemented a bit-parallel

LCS computation algorithm (Crochemore et al. [2001]) to compute the pairwise

alignment scores (“BLCS”). Figure 6.18 shows the speedup of using this method

over LCS computation by the standard dynamic programming algorithm for different

string lengths (we compare the running times of the algorithms for computing the

LCS of two random input strings of the same length, using 3 bits per character). Our

64-bit implementation of this algorithm can achieve a speedup of around 32 over the

standard dynamic programming algorithm for inputs of length 200. Note that our

implementation achieves speedups greater than the machine word size since it uses

highly optimized assembler code to perform the necessary bit addition operations

(see Appendix A), whereas the dynamic programming code has been implemented

using C++ to simulate running times comparable to the code used by Ott et al.

[2009].

Furthermore, we compared our results to the code used by Ott et al. [2009]

(“Heur”) which uses the standard dynamic programming algorithm (Wagner and

Fischer [1974]; Needleman and Wunsch [1970]) and a heuristic to speed up compu-

124

tation when a minimum alignment score for a window pair is specified. In “Sea-16”,

vectors of 16-bit values were used. Using the results from Section 6.4, we can improve

this to use 8-bit values, by computing (200, 2)-restricted highest-score matrices. The

results of our experiments are shown in Table 6.1. We see that the seaweed-based

algorithm is fastest for all data sets. We also see that the heuristic employed by

Heur makes this algorithm more effective than the BLCS method for long sequences.

However, we note that it would be possible to adapt BLCS to make use of the same

heuristic speedup. Overall, these results show that the seaweed algorithm is highly

competitive against the repeated dynamic programming approach, and that partic-

ularly the byte vector version (“Sea-8”) is more than seven times faster than the

best existing method.

Furthermore, we show performance results for the GPU version of our al-

gorithm in Table 6.2. We see that the new method is significantly faster than

its competitor NW-Align, and that using the graphics processor (“Sea-nonoverlap-

gpu”)4 also gives improved performance over the already heavily optimized CPU

code (“Sea-nonoverlap-cpu”) from Section 6.4, particularly for large problem sizes.

Furthermore, we see that the overlap method introduced in the last section currently

gives a performance improvement of around 10%. However, we believe that our im-

plementation of this method has much potential for improvement by reducing the

overhead induced by extending the strips, and thereby achieving a more noticeable

improvement. Another improvement to our code could be to execute computations

on the graphics processor and on the CPU in parallel. In the current version, the

graphics processor is used to pre-compute the implicit highest-score matrices for all

overlapping areas in the alignment dag, which are then extended to the full strips

of height w on the CPU. This allows us to compare the performance between the

graphics processor and CPU implementations. For practical purposes, it would be

sensible to implement workload sharing between the CPU and the graphics proces-

sor, which would allow us to use both units in parallel for computing and extending

the highest-score matrices in the algorithm from Section 6.6.

4Note that using the O(mnw) algorithm which does not exploit overlaps is equivalent to setting
k = 1 in the overlap method.

125

We also conducted experiments to study the scalability on larger numbers of

processors as shown in Section 6.7. Each processor produces a local output file, these

are merged in a postprocessing step to obtain the full alignment plot. We obtained

good speedup especially for the large datasets both on small and larger parallel

systems (see Table 6.3). Note that our sample datasets are still rather small. An

interesting application for the algorithm would be whole-genome comparison, which

involves much larger input sequences, and hence better speedup on more processors.

126

Chapter 7

Conclusion and Outlook

7.1 Summary

In this thesis, we have presented a unified approach to modelling and exploiting par-

allelism in string alignment algorithms. Our approach encompasses multiple types

of parallelism, from the bit level to coarse grained parallel computation. We con-

sider string alignment as a special case of semi-local string comparison, which has

been recognized as a natural way to decompose string alignment into subproblems

that can be distributed for being solved in parallel. The first main result of this

thesis uses recent results on semi-local string comparison to achieve scalability in

the asymptotic communication requirements for string alignment computation. For

this, we propose a revised approach to analyzing BSP algorithms which includes the

analysis of communication and I/O cost, as well as of the local memory requirements.

We define asymptotic scalability in memory and communication properties, which

are important both for algorithms on loosely coupled parallel systems, as well as

for obtaining scalable algorithms for modern multi-core and SMP computers. Scal-

able communication captures the input/output cost of decomposing a problem into

subproblems, and achieving scalable memory enables the partitioning of a problem

into smaller subproblems which fit into processor caches or into small amounts of

local memory. Communication cost can impact the performance of a parallel algo-

rithm even if it is asymptotically dominated by the computation cost, particularly

127

when communication does not scale as well as computation and large numbers of

processors are used, or if large problem inputs need to be distributed using a slow

communication network. In this thesis, we show how to achieve scalable memory

and communication for computing longest common subsequences, as well as for com-

puting longest increasing subsequences. We show improved theoretical complexities

for communication and memory, and demonstrate the practicality of these results

using a simple performance model. Table 7.1 shows a summary of our results for

comparing two strings of length n in parallel with scalable communication.

The scope of applying semi-local string comparison is not limited to obtaining

coarse-grained parallel algorithms. We also show how bit-parallel algorithms for

LCS computation relate to semi-local string comparison, and how to obtain efficient

algorithms which are parameterized by the similarity or dissimilarity of the input

strings. This is achieved by reducing the semi-local string comparison problem to

the evaluation of a specific class of comparison networks. By this approach, we can

obtain many classical algorithms for LCS computation, including parameterized and

bit-parallel algorithms, and also improved bounds for parameterized semi-local LCS

computation. Table 7.2 shows a summary of results for parameterized semi-local

string comparison of two strings.

In the last part of this work, we study a practical application of semi-local

string comparison: computing alignment plots of biological sequences. We show

how theoretical methods based on semi-local string comparison can be implemented

efficiently to obtain a fast tool for loss-free local sequence comparison. This tool has

also been applied at the Systems Biology Centre at Warwick University, and is now

part of a web service which provides access to tools for evolutionary sequence anal-

ysis. Furthermore, this implementation provides a starting point for an algorithm

engineering project to implement fast, reusable software for local string comparison.

Another outcome of this last part is the establishment of a relationship between

our theoretical model of parallel computation and the practical implementation of

algorithms on multi-core computers and graphics processors.

128

P
ro

b
le

m
W

(n
,p

)
H

(n
,p

)
M

(n
,p

)
S

S
la

ck
n

e
ss

P
a
g
e

si
m

p
le

u
n

it
-M

on
g
e

m
at

ri
x

m
u
lt

ip
li

ca
ti

o
n

O
(n

1
.5 p

)
O
(
n √
p

lo
g
p
)

O
(
n √
p

)
O

(1
)

n
>
p

2
p

.
37

O
(n

lo
g
n

p

)
O
(n p

lo
g
p
)

O
(n p
)

O
(l

og
p
)

n
>
p

3
p

.
47

se
m

i-
lo

ca
l

L
C

S
O
(n

2 p

)
O
(
n √
p

lo
g
p
)

O
(
n √
p

)
O

(l
og
p
)

n
>
p

2
u

si
n

g
p

.
37

O
(n

2 p

)
O
(
n √
p

)
O
(
n √
p

)
O

(l
og

2
p
)

n
>
p

3
se

e
p
.

56

L
IS

/
p

er
m

u
ta

ti
o
n

st
ri

n
g

L
C

S
O
(n

lo
g
2
n

p

)
O
(n p

lo
g
p
)

O
(n p
)

O
(l

og
2
p
)

n
>
p

3
se

e
p
.

59

T
ab

le
7.

1:
R

es
u
lt

s
on

p
ar

al
le

l
st

ri
n

g
co

m
p

ar
is

on

129

Parameterisation Running time Page

Highly dissimilar strings of length n

Number of matching character pairs r O(n
√
r) p. 73

Length of the LCS p O(np) p. 79

Run-length compressed strings of length m and n

Compressed string lengths m̄ and n̄ O(mn̄+ m̄n) p. 78

Table 7.2: Results on parameterized semi-local string comparison

7.2 Outlook

Building on the results of this thesis, several directions of future research exist.

Firstly, we believe that it is possible to improve the number of supersteps required for

the work-optimal highest-score matrix multiplication procedure shown in Section 4.3

to O(1). This would make it superior to the method from Section 4.2 in all aspects

and improve the synchronization complexity for all the algorithms depending on

this procedure by a log p-factor. The challenge this entails is to avoid exponential

slackness, i.e. requiring p < log n. However, this improvement is mostly of theoretical

interest, since synchronization usually makes up for only a small part of the running

time on modern parallel systems (see e.g. Krusche and Tiskin [2006]).

It remains an open question whether it is possible to obtain a generally work-

optimal parallel algorithm for the LIS problem running in time O((n log n)/p) in the

comparison-based model, or O((n log log n)/p) in the integer arithmetic model. Such

an algorithm would be of theoretical as well as practical interest. It is astonishing

that no generally work-optimal parallel algorithm for such an “old” problem is known

yet. Furthermore, the problem has applications in DNA comparison (Delcher et al.

[1999]) and other areas (see e.g. Bar-Yehuda and Fogel [1998]).

It would also be interesting to implement the algorithms shown in Chapter 4

and study their practicality. An immediate application for such an implementation

would be extending the tools for alignment plots shown in Chapter 6 to use an

130

O(mn)-time method for computing alignment plots. Similarly, the implementation

of highest-score matrix composition algorithms in combination with suffix trees or

related data structures (McCreight [1976]; Crochemore et al. [2007]) could be applied

to providing an efficient database of fully local (substring to substring) alignments.

Another direction of further work on alignment plots is the extension of our

current software to allow comparison on the full-genome scale. Currently, such

computations would require a substantial amount of computation time on a large-

scale parallel computer. Improving the GPU-based computation code, implementing

pre-processing methods, and combining the seaweed method with some type of data

compression would allow for more cost-efficient local comparison of larger input

sequences.

Figure 7.1: Dual graph of the alignment dag

Finally, all work on string alignment in this thesis is based on algorithms for

computing longest common subsequences, since the methods for semi-local string

comparison by Tiskin [2010a] are limited to highest-score matrices which are unit-

Monge only. One possibility of extending these methods could be to consider the

seaweeds from Definition 3.5.4 as paths in the dual graph of the alignment dag (see

Figure 7.1). An interesting direction of future research would be to study the exact

131

relationship between seaweeds and their representation as paths in this dual graph.

Many problems in planar graphs have efficient solutions involving paths in the dual

graph (see e.g. the work by Khuller et al. [1993], and Klein [2005]), and using these

methods might allow generalizing the seaweed method to alignment dags with more

general weights.

132

Appendix A

A vector library using

MMX/SSE

A.1 Introduction

We implement vector parallelism using a parallel vector function library similar to

Framewave (The Framewave Group [2009]) or Intel’s performance primitives (In-

tel Corporation [2010b]). This library provides optimized vector operations for

implementing the seaweed algorithm. By design choice, our library does not use

multithreading, we make use of multithreaded programming on a higher level of

parallel algorithm implementation (see Appendix B). The main goal of this library

is to provide an efficient basis for implementing word-RAM style algorithms in a

high level language. Our library provides functions that work on vectors of k-bit

integers. It provides functions for efficient storage, allocation, access, and manip-

ulation of these vectors. Since the requirements for string comparison algorithms

range from generic operations, like bit shifts, logical operations and arithmetic, to

specific ones for implementing bit-parallel LCS algorithms, the decision was made

to implement a custom library. Our library is portable to most current platforms

running on Intel processors, namely Windows (Microsoft Corporation [2010]), Linux

(Wikipedia [2010]), and MacOS X Darwin (Apple Inc. [2010]). Our implementation

mainly uses the C++ programming language (see Stroustrup [1987] for reference).

133

Some parts have been implemented using optimized assembler code for the Intel ar-

chitecture (Fog [2010] gives a wealth of material on this topic). Our library employs

a few advanced techniques using C++ templates (see Alexandrescu [2001] for an

introduction, and Vandevoorde and Josuttis [2003] for reference) to provide good

performance for a range of library parameters. The aim of this section is to give

an highlight the capabilities of this library, and give an overview of key issues in its

implementation.

A.2 Programmer’s interface

The vector library is composed of two parts: A high level abstraction of vector

operations, and a low level implementation part using assembler language and C

code.

The programmer’s interface is given by the following classes.

1. template <BYTE value bits> class IntegerVector: Objects of this type

encapsulate functionality for dealing with words of value bits bits.

2. class BitString: This class is equivalent to IntegerVector< 1 >

3. template<int bpc, UINT64 mapval = 1, bool invert = true>

class CharMapping: This class implements character match mappings for

bit-parallel string comparison algorithms. Let σ be a bpc-bit character, and

x a string of n bpc-bit characters. An object of type CharMapping will map

any such character σ to a BitString b with

b[i] =

1 if x[i] = σ

0 otherwise.

We will now give descriptions for the IntegerVector and CharMapping classes.

134

A.2.1 Class IntegerVector

We allow specifying the number of bits per word as a template parameter. Variable

value bits specifies how many bits are contained in each word in the vector.

template <BYTE value_bits >

class IntegerVector {

public:

typedef IntegerVector <value_bits > my_type

Depending on value bits, we declare two constants. Constant msb has only the

most significant bit set, i.e. msb = 2value bits−1. Constant lsbs has all bits in a

word set, i.e. lsbs = 2value bits − 1.

static const UINT64 msb = (static_cast <UINT64 >(1))

<< (value_bits - 1);

static const UINT64 lsbs = 2*msb - 1;

We give a standard constructor, which initializes an empty vector of a given size

and a copy constructor.

IntegerVector(size_t words = 0);

IntegerVector(my_type const & v);

Another way of initializing a vector is as a slice of another vector. This operation

allows performing operations locally on smaller parts of a bigger vector to save

computation time.

IntegerVector(my_type & data , size_t _vword_len);

Furthermore, we can construct a vector from a string. This constructor translates

the input string lexicographically into numbers. Character ’A’ is translated into 1,

’B’ into 2, and so on. Every ASCII character smaller than ’A’ is translated into a

zero.

IntegerVector(const char * string);

IntegerVector(std:: string const & s);

The following functions are used to initialize all words in the vector to either zero,

or to have all bits set.

135

void zero ();

void one ();

We also supply a few common string operations like reversal, resizing, assignment,

substring extraction and concatenation.

void reverse ();

void append(my_type const & a);

void resize(size_t words);

my_type & operator= (my_type const& v);

/**

* Extract characters (*this)[start , end]

* (range including start and end)

*/

void extract_substring(size_t start ,

size_t end , my_type & target) const ;

/**

* Compatibility with std:: string :: substr. extract length

* characters , starting at position

*/

my_type substr(size_t position , size_t length) const ;

The following functions return the size of the vector and allow direct access to its raw

data. We will discuss in Subsection A.3.5 how this can be used to only manipulate

slices of a vector.

/**

* return the number of words in this vector */

size_t size() const ;

/**

* direct data access pointer */

char * data() const ;

/**

* direct data access size */

size_t datasize () const;

136

/**

* move the start of the data slice of the vector. Only valid

* if constructed using data from another vector , and if

* value_bits divides 64 bits. */

void shiftstart(int offset);

Since all words are stored consecutively and may not be aligned to byte or word

boundaries, element access is implemented by means of a proxy class which handles

reading and writing. This allows accessing the vector elements in the same fashion

as a standard C++ array at the expense of some overhead for proxy class creation.

When optimizing code, such accesses may be replaced by calls to direct calls to the

functions put and get.

UINT64_proxy <value_bits > operator [] (size_t ofs) const

void put(size_t pos , int value) ;

int get(size_t pos) const ;

We provide a set of functions which combine vectors element by element. The first

such function generates a match mask in the current vector: given two strings s1

and s2, it performs the following operation: (∗this)[i] = 0 if s1[i] 6= s2[i], and

(∗this)[i] = lsbs otherwise. The counterpiece to this operation replaces all values

in the current vector with other values (∗this)[i] = vy[i] if mask[i] = lsbs.

void generate_match_mask(const my_type & s1 ,

const my_type & s2);

void replace_if(my_type const & mask , my_type const & vy);

We also provide a compare-exchange function. This function exchanges elements

(*this)[i] and t[i] if and only if (∗this)[i] > t[i].

void cmpxchg(my_type & t);

The following functions perform element-wise operations as follows: (∗this)[i] =

(∗this)[i] ◦ v[i] where ◦ ∈ {&, |||, }̂. We also provide bitwise negation.

my_type & operator &= (my_type const& v);

my_type & operator |= (my_type const& v);

my_type & operator ^= (my_type const& v);

137

void negate () ;

my_type operator ~() const ;

Another type of operation combines each vector element with one constant j:

(∗this)[i] = (∗this)[i] ◦ j where ◦ ∈ {+,−,&, |||, }̂.

my_type & operator += (UINT64 j);

my_type & operator -= (UINT64 j);

my_type & operator &= (UINT64 j);

my_type & operator |= (UINT64 j);

my_type & operator ^= (UINT64 j);

The following functions provide a shorthand way to set and reset specific bits in

every element in the vector.

void set_bits(UINT64 bits);

void and_bits(UINT64 bits);

void reset_bits(UINT64 bits);

The following functions provide some specific element-wise functionalities required

by some of the algorithms implemented in this thesis.

/**

* Test in each word if a specific bit is set.

* Set each word that has the bit set to lsbs , all others

* to 0 */

void bittest(int c = 0) ;

/**

* Saturated increment , only increments a word

* if it does not have all bits are set already */

void saturated_inc () ;

/**

* Set all words to lsbs which are equal to zero ,

* reset all other words to zero. */

void test_zero () ;

138

The following operations regard the vector as a long n·value bits-sized integer. We

start with bit shifts of the entire vector, ignoring word boundaries. The following

operations can be used to shift all vector data by a given number of bits.

my_type & operator <<= (int shift);

my_type & operator >>= (int shift);

The following function implements the basic addition operation for bit-parallel LCS

computation introduced by Crochemore et al. [2001]: (∗this) = ((∗this)&v) +

((∗this)& ∼ v). Apart from this, we also define standard addition and subtraction

operations.

my_type & add_cipr(my_type const & v, BYTE carry = 0);

my_type & operator += (my_type const& v);

my_type & operator -= (my_type const& v);

Subtraction and (special) addition operations might leave a carry, which can be

queried using the following function.

bool carry () const;

The following functions implement vector-wide bit counting using a lookup table

(see Manku [2010] for a discussion, and Jr. [2003], as well as Beeler et al. [1972] for

further reference).

size_t count_bits () ;

size_t count_zeros () ;

};

A.2.2 Class CharMapping

This class implements character match mappings. A CharMapping is constructed

from a string, and is derived from the standard C++ std::vector class. After

construction, the vector contains 2 bpc different BitString objects which indicates

the occurrences of each character from the alphabet in the string str the mapping

was constructed from.

template <int _bpc , UINT64 _mapval = 1, bool _invert = true >

139

class CharMapping : public std::vector < BitString > {

public:

CharMapping(IntegerVector <_bpc > const & _str);

};

A.3 Vector operations and their efficient implementa-

tion

In this section, we describe various optimisations which were used implementing

the class IntegerVector. We start describing the storage format of the vectors.

Figure A.1 shows the storage format for our vectors. We use alignment to 256-bit

(8 byte) boundaries, which allows using all types of MMX and SSE instructions,

and ensures good memory access performance. We use padding to 256-bit aligned

end addresses. This allows implementing bit shifts and other operations which may

carry data outside the vector more efficiently. Based on this storage format, we

. . .

bpc bits

64 bits 64 bits 64 bits

bpc bits

256-bit aligned starting position padded to 256-bit aligned ending position

Figure A.1: Class IntegerVector data storage format

provide efficient implementations of various word-RAM/MPRAM operations. The

main advantages of providing such optimized implementations are:

• Hand-written assembler code can be tuned to use registers only for counting

and other overhead arithmetic. This maximizes vector operation throughput,

since the only data transferred from main memory or higher-level caches is the

data that is actually manipulated.

140

• Lower overhead for function calls. Modern compilers may generate code for

generating stack frames, storing local variables, etc. We can avoid this by

optimizing register and stack usage manually.

The effort for doing this is worthwhile, since our vector routines are used at the

core of very computation-intensive code, and are called very frequently. Lower per-

call overhead and maximum data throughput are essential for achieving the best

performance possible. We will show a few of these optimized functions here. Note

that each function has been implemented in different versions for different operat-

ing systems (Windows and Linux/MacOS use different calling conventions, see Fog

[2010]), and on 32 or 64-bit programming modes. These function implementations

are stored in separate source files, the correct file for the current platform is selected

at compile time.

A.3.1 Addition with carry

A first operation which is commonly used in many of our algorithms is addition

of two integers, retaining the carry if the result exceeds the integer’s range. When

implementing this operation using portable C++ code, it is very hard to ensure that

the result will run efficiently. Consider the following piece of code which performs

addition with carry on two 32-bit integers.

INT32 add_with_carry_generic(INT32 a, INT32 b, BYTE * c) {

INT32 carry = 0;

// the first time we might create an overflow is when

// adding the carry from *c

carry = a == -1;

a+= (INT32)*c;

// if both msbs are set , we also get an overflow

carry |= ((a & b & 0x80000000) != 0) ? 1 : 0;

*c = carry;

return a + b;

}

141

The problem with this code is that it will almost certainly be translated into machine

code which includes branching instructions. This is not efficient, especially consid-

ering that the Intel architecture provides a simple “add with carry” instruction. On

a 32-bit platform, the following assembler code performs the same operation more

efficiently.

public_c_symbol add_with_carry32

;PROC a:DWORD , b:DWORD , _c:ptr

push esi

mov eax , [esp+8] ; [a]

add eax , [esp +12] ; [b]

setc dl ; remember first carry

mov esi , [esp +16] ; [&c]

movzx ecx , byte [esi]

add eax , ecx

setc cl

or cl , dl ; carry if either of the additions

and cl , 1 ; generated an overflow

mov byte [esi], cl

pop esi

RET

For adding 1000000 integers, we get the following execution times. On 32-bit Win-

dows (2.33 GHz Core2 Duo processor, Visual C++ 8.0 compiler), the code runs in

0.013 seconds for the generic version and 0.0084 seconds for the optimized assem-

bler code, making for a speedup of 1.55. For 64-bit integers, the difference is more

substantial on this system with 0.024 seconds for the generic implementation, and

0.0125 seconds for the assembler version, giving a speedup of 1.92. On 64-bit Linux

using gcc 4.3.1, the difference is smaller, having a runtime 0.0059 seconds for the

generic version, 0.0057 seconds for the assembler code, therefore having more or less

equal performance for 32-bit integers. For 64-bit integers, we get 0.0087 seconds for

the generic code and 0.0078 seconds for the assembler version, making it 1.12 times

faster. In conclusion, our optimized version is never slower than the generic code,

142

and allows for system-dependent performance gains between 10% and 90%, which

can save a significant amount of computation time for a frequently-used function.

Function Generic Assembler Speedup

Windows 32-bit, Visual C++ 8.0

add with carry32 0.013 s 0.0084 s 1.55

add with carry64 0.024 s 0.0125 s 1.92

Linux 64-bit, gcc 4.3.1

add with carry32 0.0059 s 0.0057 s 1.03

add with carry64 0.0087 s 0.0078 s 1.12

A.3.2 Vector addition

Another important operation is considering two vectors as n · bpc numbers, and

performing addition-type operations. This is one of the main ingredients in the

bit-parallel LCS algorithm by Crochemore et al. [2001].

We implement the following generic operations. The function vecadd per-

forms a standard addition, of two vectors interpreted as long numbers. The function

vecadd cipr performs the addition operation that is the core of the bit-parallel LCS

algorithm by Crochemore et al. [2001], where we compute for two vectors L and M

the sum L′ = (L&M) + (L& ∼ M).

void vecadd_generic(UINT64 * data1 , UINT64 * data2 ,

size_t len , BYTE initial_carry /* = 0 */) {

BYTE carry = initial_carry;

for (size_t z = 0; z < len; ++z) {

*data1 = add_with_carry64 (*data1 , *data2 , carry);

++data1; ++ data2;

}

}

void vecadd_generic_cipr(UINT64 * M, UINT64 * L,

size_t len , BYTE initial_carry /* = 0 */) {

BYTE carry = initial_carry;

for (size_t z = 0; z < len; ++z) {

143

*L = add_with_carry64 (*L & *M, *L & (~(*M)), carry);

++M; ++L;

}

}

The following 64-bit assembler versions of these functions can carry out the complete

loop using only registers for counting.

public_c_symbol vecadd

;PROC data1:PTR , data2:PTR , len:DWORD , carry : BYTE

; rdi contains M

; rsi contains L

; rdx contains len

; rcx contains carry

lahf

and cl , 1

or ah , cl ; carry

xor rcx , rcx

.loop:

mov r8 , [rsi + 8*rcx]

sahf

adc [rdi + 8*rcx], r8

lahf

inc rcx

dec rdx

jnz .loop

sahf

setc al

RET

public_c_symbol vecadd_cipr

; PROC M:PTR , L:PTR , len:DWORD , carry : BYTE

; rdi contains M

; rsi contains L

; rdx contains len

144

; rcx contains carry

mov al , cl

xor rcx , rcx

.loop:

mov r8 , [rsi + 8*rcx] ; r8 = L[i]

mov r9 , [rdi + 8*rcx] ; r9 = M[i]

mov r10 , r9

not r10

and r10 , r8 ; r10 = V = L & ~M

and r9 , r8 ; r9 = U = L & M

bt ax , 0

adc r8 , r9 ; L’ = (L+U)|V

setc al

or r8 , r10

mov [rsi + 8*rcx], r8

inc rcx

dec rdx

jnz .loop

RET

When adding vectors of 100000 64-bit words, we get the following times and speedups

on the systems described above.

Function Generic Assembler Speedup

Windows 32-bit, Visual C++ 8.0

vecadd 0.00114 s 0.000453 s 2.52

vecadd cipr 0.00134 s 0.000624 s 2.15

Linux 64-bit, gcc 4.3.1

vecadd 0.0004 s 0.000283 s 1.41

vecadd cipr 0.00038 s 0.000295 s 1.3

145

A.3.3 Vector shifting

Finally, an important vector operation are bit shifts. Optimizing this operation is

important for implementing the algorithm shown in Section 6.4, as well as e.g. the

algorithm by Boasson et al. [2001] for window-local subsequence matching. The

reference implementations of vecshl and vecshr look as follows.

void vecshl_generic(UINT64 * data , size_t shift , size_t len) {

UINT64 tmp1 = 0, tmp2;

for (size_t z = 0; z < len; ++z) {

tmp2 = *data;

*data = (*data << shift) | (tmp1 >> (64 - shift));

tmp1 = tmp2;

++data;

}

}

void vecshr_generic(UINT64 * data , size_t shift , size_t len) {

for (size_t z = 0; z < len; ++z) {

*data = (*data >> shift) | (data [1] << (64 - shift));

++data;

}

}

public_c_symbol vecshl

; PROC data1:PTR , bits:DWORD , len:DWORD

; rdi contains data1

; rsi contains bits

; rdx contains len

xor r8 , r8

mov cx , si

.loop:

mov rax , [rdi]

mov r9 , rax

shld rax , r8 , cl

mov r8 , r9

146

mov [rdi], rax

add rdi , 8

dec rdx

jnz .loop

RET

public_c_symbol vecshr

; PROC data1:PTR , bits:DWORD , len:DWORD

; rdi contains data1

; rsi contains bits

; rdx contains len

dec rdx ; vector is padded by two QWORDs.

; We skip one here so we can read

; ahead a little

mov rax , [rdi]

mov cx , si ; move bits to cl

.loop:

mov r8 , [rdi+8]

shrd rax , r8, cl

stosq

mov rax , r8

dec rdx

jnz .loop

RET

When bit-shifting 100000 64-bit words, we get the following runtimes. Again,

the assembler code gives substantial speedup on the 32-bit platform.

147

Function Generic Assembler Speedup

Windows 32-bit, Visual C++ 8.0

vecshl 0.0312 s 0.009 s 3.47

vecshr 0.0259s 0.011 s 2.35

Linux 64-bit, gcc 4.3.1

vecshl 0.0044 s 0.0038 s 1.16

vecshr 0.0044 s 0.0037 s 1.19

A.3.4 Specialized implementation for 8-bit and 16-bit words

Apart from generic functions which work on vectors with words of any bit length,

we provide specialized implementations of certain functions for 8-bit and 16-bit

words using MMX and SSE2. The implementation uses partial template specialisa-

tion (see Vandevoorde and Josuttis [2003]) for the classes IntegerVector<8> and

IntegerVector<16> to make these operations available to the programmer.

We will show the implementation of the compare-and-exchange function as

an example. Other functions have been implemented for generating match masks

and saturated addition. In particular, all functions necessary for implementing the

algorithms from Chapter 6 are available as optimized SSE and MMX versions.

The generic implementation of compare-exchange looks as follows. We com-

pare each pair of vector elements in two vectors, and make sure that the first vector

contains the smaller element.

void cmpxchg_generic(BYTE * data1 , BYTE * data2 , size_t len) {

for (size_t z = 0; z < len; ++z) {

BYTE t1 = *data1;

BYTE t2 = *data2;

if(t1 < t2) {

*data1 = t2;

*data2 = t1;

}

}

}

148

For a vector of 8-bit words, we can perform the same operation on multiple words

in parallel using the following SSE code. Since SSE does not support element-wise

comparison and exchange operations directly, we use the difference between satu-

rated subtraction (i.e. subtraction up to a maximum result of zero), and standard

subtraction.

; elementwise compare and sort

; data1 gets the smaller elements

public_c_symbol cmpxchg_8_mmx

;PROC data1:PTR , data2:PTR , len:DWORD

; rdi contains data1

; rsi contains data2

; rdx contains len

; xmm5 == 0ffffff....ff

pcmpeqd xmm5 , xmm5

; xmm6 = 00010001

movdqa xmm6 , [mmx_one_b]

xor rcx , rcx

mov rax , rdx

shr rdx , 1

jz .fin

.loop:

movdqa xmm0 , [rsi+rcx]

movdqa xmm1 , [rdi+rcx]

movdqa xmm2 , xmm1

; xmm2 = 0 if xmm0 > xmm1 ; xmm2 = xmm1 -xmm0 otherwise

psubusb xmm2 , xmm0

; xmm2 = xmm0 if xmm0 > xmm1 ; xmm2 = xmm1 otherwise

paddb xmm2 , xmm0

movdqa xmm3 , xmm2

149

pandn xmm3 , xmm5 ; xmm3 = !xmm3

; xmm3 = -xmm2 (two’s complement), i.e.

; xmm2 = -xmm0 if xmm0 > xmm1 ; xmm2 = -xmm1 otherwise

paddb xmm3 , xmm6

; xmm2 = 0 if xmm0 > xmm1 ; xmm2 = xmm0 -xmm1 otherwise

paddb xmm3 , xmm0

; xmm2 = xmm1 if xmm0 > xmm1 ; xmm2 = xmm0 otherwise

paddb xmm3 , xmm1

movdqa [rdi+rcx], xmm3 ; the smaller values

movdqa [rsi+rcx], xmm2 ; the larger values

add rcx , 16

dec rdx

jnz .loop

.fin:

RET

When running cmpxchg on vectors of 800000 bytes, we get the following running

times and speedups. The speedup for this operation is greater than for the functions

studied so far, since the vector operations can process multiple elements in paral-

lel. Even modern compilers still struggle to recognize and implement this type of

parallelism in high-level language code to the same extent as manual optimization.

Function Generic Assembler Speedup

Windows 32-bit, Visual C++ 8.0

cmpxchg 0.00434 s 0.00029 s 15

Linux 64-bit, gcc 4.3.1

cmpxchg 0.0006 s 0.00018 s 3.3

A.3.5 Manipulating slices of vectors

When implementing the seaweed algorithm using vector parallel operations, we en-

counter the problem that the vectors we have to manipulate may grow or shrink

150

from step to step with the size of the dynamic programming wavefront (see Sec-

tion 6.4. We approach this problem by allocating a vector that is able to store the

maximum length of a wavefront, and allowing us to restrict the range in which op-

erations have effect by working on a slice of the vector (a similar concept has been

used in the Boost array library to manipulate parts of multi-dimensional arrays, see

Garcia et al. [2010]). In order to prevent overhead for creating exact slices which

might not align with the 64-bit storage boundaries required for applying MMX/SSE

operations, we only require this range restriction in a weak sense: operations on a

vector slice are guaranteed to work on all values contained within the slice, but

might also affect values in neighbouring areas.

We can declare vectors and slices thereof as follows.

// allocate a vector of 1000 bytes

IntegerVector <8> storage_vector (1000);

// this vector only accesses the first 100 elements of

// storage_vector

IntegerVector <8> slice(storage_vector , 100);

// we can increase the size of the slice to 200

slice.resize (200);

// we can also move the slice through the vector in

// steps of eight bytes

slice.shiftstart (25); // move up 200 = 25*8 characters

After these steps, all operations on slice will manipulate the 200 characters in

storage vector starting at position 200. We do not require the operations to

restrict their actions to only these 200 characters. This is not required by our

application, where we only work with values within a wavefront which grows and

shrinks linearly. Therefore, we do not need to selectively run operations on different

parts of a vector while preserving its contents in between, which would complicate

the implementation of slices unnecessarily.

151

A.4 Vector library list of files

Table A.1: Vector library list of files and contents

Filename Contents

CharMapping.h Declaration and implementation of the

CharMapping class

functors.h Declaration of functors used in

IntegerVectorFixed.h to implement

element-wise operations on arrays.

IntegerVector.h Declaration of the generic IntegerVector

class.

IntegerVectorFixed.h Partial specialisations of

IntegerVector<8>, IntegerVector<16>,

and IntegerVector<32>

xasmlib.h Function prototypes for the low level C

and assembler functions.

xasmlib.c Library initialization function implemen-

tation.

machineword AMD64.asm Optimized assembler code for 64-bit Win-

dows platforms.

machineword AMD64 sse2.asm Optimized SSE2 assembler code for vector

functions on 64-bit Windows platforms.

machineword x86.asm Optimized assembler code for 32-bit Win-

dows/Linux platforms.

machineword x86 64.asm Optimized assembler code for 64-bit Lin-

ux/MacOS X platforms.

machineword x86 64 mmx.asm Optimized MMX (no SSE) assembler code

for vector functions on 64-bit Linux plat-

forms (for reference/comparison use only).

Continued on the next page...

152

...continued from last page.

Filename Contents

machineword x86 64 nommx.asm Vector operation assembler code without

MMX/SSE for 64-bit Linux platforms (for

reference/comparison use only).

machineword x86 64 sse2.asm Optimized SSE2 assembler code for vector

functions on 64-bit Linux platforms.

machineword x86 mmx.asm Optimized MMX assembler code for vec-

tor functions on 32-bit Windows/Linux

platforms.

machineword x86 nommx.asm Assembler code without MMX for vector

functions on 32-bit Windows/Linux plat-

forms (for reference/comparison use only).

machineword x86 sse2.asm Optimized SSE2 assembler code for vector

functions on 32-bit Windows/Linux plat-

forms.

153

Appendix B

A BSP library for C++

B.1 Introduction

Various libraries for BSP-style programming have been implemented, most of them

follow the BSPlib standard (Hill et al. [1998]; Bonorden et al. [2003]). However,

when MPI (Snir et al. [1995]) and OpenMPI (OpenMP Architecture Review Board

[2010] established themselves as the standards for coarse-grained programming, fur-

ther development of these libraries came to a halt. The most recent BSP pro-

gramming library is BSPonMPI (Suijlen and Bisseling [2010]), which implements

a BSPlib-style message buffer for BSP programming using MPI. In this section,

we show a small library for BSP programming which is based on BSPonMPI and

Intel’s Threading Building Blocks (TBB, Intel Corporation [2009]) which simplifies

BSP-style programming on cluster systems with multi-core/SMP nodes. Further-

more, our library provides a layer of abstraction between the number of processors

physically available, and the number of processors used by a BSP algorithm. Such

“virtual processors” have been implemented in the PUB library (PUB library).

However, our approach allows us to make better use of SMP and multicore systems,

and uses TBB’s functionality for task-based parallel programming for achieving good

performance. Furthermore, we can use our library to compile BSP program versions

both for MPI-based cluster systems and multi-core desktops from the same source

code.

154

B.2 Extending BSPonMPI

The first step towards our new library consisted in modernizing the BSPonMPI

library, and introducing an extension in the BSPlib programming model, which is

better suited to the model for parallel algorithms introduced in Chapter 2. The

main modifications to BSPonMPI to adapt it to our requirements were:

Improving portability: The official BSPonMPI release only supports Linux plat-

forms and uses an old version of the GNU Autoconf toolset (Free Software

Foundation (FSF) [2010a]). For our work, the library was adapted to use the

modern SCons tool for cross-platform compilation (The SCons Foundation

[2010]), and the program code was updated to handle different calling con-

ventions and compilers, and can therefore be used on Windows, Linux, and

MacOS X platforms.

Introducing global DRMA: BSPonMPI supplies the standard direct remote

memory access operations (DRMA) specified by the BSPlib standard. These

operations allow the programmer to allocate and publish a memory segment

of a specified size on each processor, and then access this memory from other

processors. The programming interface from BSPlib allows the programmer to

register/unregister areas of memory as globally accessible, and post requests

for reading or writing from/to such a memory segment on a given processor.

These requests are fulfilled at the end of a superstep, which is indicated by a

call to the bsp sync() function. Our programming interface extension removes

the dependency on the number of physical processors from this programming

interface. We allow allocation of a segment of global memory, which is ac-

cessed in the same way, but which might be distributed arbitrarily between

processors.

Compiling without MPI: Another extension to the original code was implement-

ing a dummy library, so BSPonMPI can be compiled without an MPI library

to run sequentially on a single node. Apart from testing purposes, this option

155

allows compiling program versions which run on cluster systems and desktop

executables from the same source code.

The programming interface for global DRMA is as follows. Each segment of

global memory can be accessed via its handle.

typedef int bsp_global_handle_t;

We can create and destroy global memory by calling bsp global [alloc|free],

followed by bsp sync to make the allocation consistent on all processors.

bsp_global_handle_t bsp_global_alloc(size_t array_size);

void bsp_global_free(bsp_global_handle_t ptr);

Access to global memory is implemented using the following functions, which are

directly adapted from the standard BSPlib DRMA functions. An item of data is

now read or written from/to a location within the global array, which may reside

on the current physical processing node, or somewhere else.

void bsp_global_get(bsp_global_handle_t src , size_t offset ,

void * dest , size_t size);

void bsp_global_put(const void * src ,

bsp_global_handle_t dest , size_t offset , size_t size);

We also provide unbuffered data access functions, which might start modifying the

data already before the end of the current superstep.

void bsp_global_hpget(bsp_global_handle_t src , size_t offset ,

void * dest , size_t size);

void bsp_global_hpput(const void * src ,

bsp_global_handle_t dest , size_t offset , size_t size);

The current implementation of these functions uses a simple block-cyclic data distri-

bution. For each array, we store a record which contains its total size (array size),

and the size of the array stored on each physical processor (local size), which is

calculated as

local size = darray size/bsp nprocs()e.

156

When accessing an item of data at location offset, we calculate the its local position

as follows:

size_t procs = bsp_nprocs ();

size_t gsize = bsp.global_arrays[src]. array_size;

size_t target_proc = offset * procs / gsize;

size_t target_idx = offset -

offset_proc*bsp.global_arrays[src]. local_size;

In future versions of the library, different distributions could be implemented as well

to suit other applications. For our string comparison applications, the cyclic data

distribution described above is sufficient.

B.3 C++ library design

Building on the updated version of BSPonMPI, we implemented a small set of

template classes which allow simple BSP-style programming on a hybrid parallel

system, i.e. a network of workstations with SMP or multi-core processors.

Programming on such a hybrid parallel system comes with a few additional

challenges compared to programming in MPI or BSPlib only. The main differences

to programming MPI-style are:

• We can dynamically change the number of virtual processors by executing

multiple threads on one or more SMP nodes.

• Remote memory access or message transmission is faster when sending data

to processes on the same SMP node.

Our BSP class library provides an extension to the BSPlib standard to handle a

variable number of virtual processes which can change between supersteps. This

simplifies the implementation of recursive BSP algorithms, and also allows imple-

menting overpartitioning (splitting a problem into more subproblems than the num-

ber of physical processors, e.g. to fit data into caches) more easily. We distinguish

between (SMP) nodes and physical processors (which might be cores or processors

157

on a SMP node). Each SMP node can host a number of virtual processors. These

virtual processors are mapped to the physical processors using the TBB task-based

parallel programming framework. In each superstep, the execution of the BSP com-

putation on a virtual processor is mapped to executing a task, which is then mapped

to a physical processor by the TBB task scheduler. This approach is more efficient

than creating a separate thread for each virtual processor, and has also been applied

by the Cilk++ programming language (Intel Corp. [2010]; Leiserson [2009]).

The DefaultSuperstep class template provides the basic functionality for

implementing BSP computations. This class template provides and implements the

following functions to a computation.

template <class _context = Loki::NullType >

class DefaultSuperstep {

public:

Each local instance of a superstep class on a virtual processor has a context ob-

ject, which stores the information that is local and persistent between supersteps.

The context object encapsulates the local memory for a process (see Figure 2.2 on

page 11). In normal BSPlib style programming, this would either be stored on the

stack or the heap of a compute node. We explicitly encapsulate it here for the

following reasons:

• We do not know how many threads we will have on a compute node, and we

do not want to restrict data storage to the stack.

• Encapsulating the local state of a virtual process in a class allows implementing

process migration and copying more easily.

• We can use the TBB task-based programming framework (Intel Corporation

[2009]) for implementing virtual processes efficiently.

The context type can be specified by the programmer as a template parameter. A

context object is created for each virtual processor, and for each SMP node, as it

can be sensible to share a certain amount of data between all virtual processors

running on a single node.

158

typedef _context context_t;

The implementation of a BSP computation will overload the run method, which

will contain the code for executing a single superstep.

virtual void run() = 0;

This code can then use the following functions to obtain the number of virtual

processes, its process id (pid), access the context object, and access the global

shared memory in a thread-safe fashion.

protected:

// number of virtual processors

virtual int bsp_nprocs () const;

// id of current virtual processor

virtual int bsp_pid () const;

// SMP -node local pid

virtual int bsp_local_pid () const;

// get the process context

virtual _context & get_context ();

// get the node context

virtual _context & get_node_context ();

// Thread safe global DRMA

virtual void bsp_global_get(bsp_global_handle_t src ,

size_t offset ,

void * dest , size_t size);

virtual void bsp_global_put(const void * src ,

bsp_global_handle_t dest , size_t offset , size_t size);

virtual void bsp_global_hpget(bsp_global_handle_t src ,

size_t offset , void * dest , size_t size);

virtual void bsp_global_hpput(const void * src ,

bsp_global_handle_t dest , size_t offset , size_t size);

};

Based on a superstep implementation using the DefaultSuperstep class

template, each node can instantiate an object of the Superstep type, which handles

virtual process creation and synchronisation using the TBB task parallelism library.

159

template <

class _implementation ,

template <class > class _procmapper = ProcMapper

>

class Superstep : public _implementation {

public:

Each Superstep object uses a ProcMapper object to handle the mapping of virtual

processors to SMP nodes.

typedef _procmapper <typename

_implementation ::context_t > procmapper_t;

typedef Superstep <_implementation , _procmapper

> my_type;

Besides the functions for thread-safe global DRMA, the Superstep class implements

the following functions.

The function start() creates all tasks for the virtual processes according to

the ProcMapper object, and immediately returns after starting their execution. The

superstep tasks will be executed by worker threads in the TBB thread pool.

void start ();

At the end of the superstep, a call to the function join() will wait for all tasks to

finish, and therefore for all virtual processors to finish the execution of the current

superstep.

void join ();

};

The default implementation of the ProcMapper class template tries to assign

an equal number of virtual processors to each SMP node. It also handles the storage

of the context objects for each virtual processor on a SMP node.

template <class _context=Loki::NullType >

class ProcMapper {

public:

// create a process mapper which handles the mapping for a

160

// given number of processors

ProcMapper(int _processors , int _groups = 1);

// number of virtual processors

int nprocs () const;

// number of processor groups

int ngroups () const;

// how many virtual processors are maximally hosted on a node

int procs_per_node () const;

// how many virtual processors are hosted on this node

int procs_this_node () const;

// return the global pid of a given local process

int local_to_global_pid(int local_pid) const;

// return the group for a given local process

int local_to_global_group(int local_pid) const;

// convert global (1 ... nprocs) pid to local pid

// (i.e. number of process on the current node)

// returns -1 if the process is not resident on the current

// node

int global_to_local_pid(int global_pid , int group = 0) const;

// get context for specific virtual processor

_context & get_context(int local_pid);

// get context for the current SMP node

_context & get_node_context ();

};

Based on these classes, we construct the following small example.

#include "bspcpp/bsp_cpp.h"

#include <tbb/mutex.h>

#include <loki/Typelist.h>

#include <iostream >

We syncronize console output using a mutex so the text doesn’t get garbled due to

multithreaded execution.

tbb:: mutex g_output_mutex;

161

The following macro simplifies creating superstep classes. We declare a superstep

which uses an int for local storage, based on the standard ProcMapper template.

BSP_SUPERSTEP_DEF_BEGIN(Superstep1 , int , bsp:: ProcMapper)

tbb:: mutex:: scoped_lock l;

l.acquire(g_output_mutex);

std::cout << "Hello from process "

<< bsp_pid ()

<< " out of " << bsp_nprocs ()

<< ". I live on node " << :: bsp_pid ()

<< ", where i am local pid " << bsp_local_pid () << "."

<< std::endl

<< "Also , I have value " << context

<< ", executing Superstep1" << std::endl;

context ++;

l.release ();

BSP_SUPERSTEP_DEF_END ()

In our second superstep template, we decrement our context counter, and print the

same information as above.

BSP_SUPERSTEP_DEF_BEGIN(Superstep2 , int , bsp:: ProcMapper)

tbb:: mutex:: scoped_lock l;

l.acquire(g_output_mutex);

std::cout << "Hello from process "

<< bsp_pid ()

<< " out of " << bsp_nprocs ()

<< ". I live on node " << :: bsp_pid ()

<< ", where i am local pid " << bsp_local_pid () << "."

<< std::endl

<< "Also , I have value " << context

<< ", executing Superstep2" <<

std::endl;

context --;

l.release ();

BSP_SUPERSTEP_DEF_END ()

162

We define our algorithm by creating a typelist that specifies the order in which

to create and execute the superstep objects. Through the FlatComputation class

template, the compiler will then unwind this list and create code which is equivalent

to manually calling run() on each of these objects, and call bsp sync() between

supersteps to initialize data transmission.

typedef bsp:: FlatComputation <LOKI_TYPELIST_4(

Superstep1 ,

Superstep1 ,

Superstep2 ,

Superstep2), int >

MyFlatParallelComputation;

The remaining code creates computation objects and handles the BSPonMPI ini-

tialisation.

void runner(void) {

bsp_begin (-1);

MyFlatParallelComputation :: procmapper_t mapper (2);

MyFlatParallelComputation ::run(mapper);

bsp_end ();

}

int main(int argc , char ** argv) {

bsp_init(runner , argc , argv);

runner ();

return 0;

}

When running on a single SMP node, this code will produce the following output,

which details the assignment of virtual processors.

Hello from process 1 out of 2. I live on node 0, where i am local pid 1.

Also, I have value 0, executing Superstep1

Hello from process 0 out of 2. I live on node 0, where i am local pid 0.

...

163

Hello from process 0 out of 2. I live on node 0, where i am local pid 0.

Also, I have value 1, executing Superstep2

Hello from process 1 out of 2. I live on node 0, where i am local pid 1.

Also, I have value 1, executing Superstep2

When running the same code using two MPI nodes, we will get the following

result, having each of the two virtual processes run on a separate MPI node.

Hello from process 1 out of 2. I live on node 1, where i am local pid 0.

Also, I have value 0, executing Superstep1

Hello from process 0 out of 2. I live on node 0, where i am local pid 0.

...

Hello from process 0 out of 2. I live on node 0, where i am local pid 0.

Also, I have value 1, executing Superstep2

Hello from process 1 out of 2. I live on node 1, where i am local pid 0.

Also, I have value 1, executing Superstep2

B.4 BSP library list of files

Table B.1: BSP C++ library: list of files

Filename Contents

bspcpp config.h Automatically generated configuration

header file.

examples/computation

bspcomputation.cpp BSP computation example

examples/parameterfiletest

parameterfiletest.cpp Test for the ParameterFile class.

examples/timer

timer.cpp Source for tool to measure program exe-

cution times in microseconds.

include/bspcpp

Continued on the next page...

164

...continued from last page.

Filename Contents

Avector.h Avector class template implementation:

This class provides a resizable array, which

can be accessed via a raw data pointer,

and is allocated with 8-byte alignment.

bsp cpp.h This is the main include file for the BSP

C++ library-

CommandLine.h Provides an interface to the CommandLine

class This class has been obsoleted by us-

ing boost::program options, but is still

used in parts of the code.

Computation.h FlatComputation class implementation

and superstep creation helper macros.

ParameterFile.h Provides an interface to the

ParameterFile class. This class provides

a simple serializable hash-type storage

container.

Permutation.h Permutation class template: Allows per-

muting elements of C++ vectors and ar-

rays in place.

ProcMapper.h The ProcMapper class allocates virtual

processors to SMP nodes and stores vir-

tual processor context variables.

Superstep.h Contains the implementation of the

Superstep class template.

include/bspcpp/tools

Continued on the next page...

165

...continued from last page.

Filename Contents

aligned allocator.h Contains a C++ allocator class which al-

locates memory segments with a specified

alignment.

singletons.h This header file provides an interface for

the various singleton variables used within

the code.

spawn.h Provides the POSIX spawnvp function in

a uniform fashion on Windows, Linux and

MacOS X.

utilities.h Various utility functions like floor/ceiling

division, factorials, stream output opera-

tors, etc.

src

CommandLine.cpp Implementation of the (obsoleted)

CommandLine class.

ParameterFile.cpp Implementation of the ParameterFile

class.

singletons.cpp Declaration of the various singleton vari-

ables (e.g. TBB’s task scheduler init

object).

timing.cpp Implementation of platform-independent

microsecond timing functions.

166

Appendix C

Alignment Plot Code

Documentation

C.1 Introduction

The main part of the seaweed code consists of various implementations of alignment

plot and LCS computation, some unit tests to ensure correct results and tools al-

low the user to obtain running time measurements. The individual tools will be

described in the following sections, followed by instructions for compiling the code

and a brief outline of the source tree.

C.2 The alignment plot tools

The three main executables for computing alignment plots are Alignment, Win-

dowAlignment, and PostProcessWindows.

Alignment

This is the original alignment code by Ott et al. [2009]. It takes two sequence files

as its input, the first sequence file must contain the parameters for the comparison,

which are the first and second step sizes (only window pairs with starting positions

aligning at these step sizes are compared), the window length, and the minimum

167

alignment score threshold. The following example shows such a first input sequence

file. In this file, the first step size is 5, the second step size is 1, and the window

length is 100.

5 1 100 55

TAAGCTAGGGGCCAGGAC...

The command line usage on Linux is as follows.

$./Alignment [firstsequencefile] [secondsequencefile]

Example versions of sequence files can be found in the subfolders of the benchmark

directory. The output of the file consists of two profile files which give the score for

the highest-scoring window in each row and column, and a file named results.txt

which contains locations and scores for all windows scoring above the threshold.

WindowAlignment

This is the main executable for computing alignment plots using the seaweed al-

gorithm. The input and output files have the same format as the ones generated

by the window alignment code by Ott et al. [2009] described above, however, the

locations of the output files and profiles can be specified separately.

The usage is as follows.

$./WindowAlignment [firstsequencefile] [secondsequencefile] \

[resultfilename] [firstprofilename] [secondprofilename]

{options}

Table C.1: WindowAlignment command line options

Filename Contents

-c enable checkpointing (resuming if checkpoint file exists for

the job)

Continued on the next page...

168

...continued from last page.

Filename Contents

-m [lcs|blcs|seaweeds|scores|scoresoverlap]: Choose method to

use.

LCS: This computes the scores by computing the LCS sep-

arately for each window pair.

BLCS: This uses bit-parallel LCS computation to obtain

the window scores, again separately for each window

pair.

Seaweeds: This uses the seaweed algorithm from Sec-

tion 6.4, and counts scores in a sliding window using

a queue.

Scores: This uses the seaweed algorithm from Section 6.4,

but computes implicit highest-score matrices to allow

faster window score queries.

Scoresoverlap: This method uses the seaweed algorithm

and uses strip overlap as described in Section 6.6 to

speed up the computation.

-os [number] specify overlap size for scoresoverlap method

-legalchars [a|b] Specify input alphabet translation. The default is to match

characters ABGCTz normally, and mismatch N and x by

setting legalchars a = ABGCTNxz, and legalchars b =

ABGCTxNz

169

Postprocesswindows

This is a tool to filter the output of Alignment/WindowAlignment and reduce the

window count. It also sorts the output files such that outputs from Alignment and

WindowAlignment can be compared using diff.

Command line usage:

$ PostprocessWindows [resultfilename] -m [number]

The number specified after the -m option gives the maximum number of windows

which are exported. If more windows are found, only the ones with the highest

scores are reported.

C.3 Compiling the code

Prerequisites

The seaweed code can be compiled using a recent version of gcc (> 4.0.0) on Linux

and MacOS) or Microsoft Visual C++ (MSVC, 2005 or 2008) on Windows. Intel

C++ compiler can be used as well. For compiling the code, the tool SCons is

required, which is an automated build environment based on Python (The SCons

Foundation [2010]). For compiling the assembler code, the yasm assembler is needed

(Johnson and other Yasm developers [2010]). Optionally, STLFilt (see http://www.

bdsoft.com/tools/stlfilt.html) can be used to simplify C++ error messages.

The following libraries are required:

Boost: We use this library for command line parsing, regular expression evaluation

and various C++ helper classes (like the auto ptr class for implementing

smart pointers. It can be obtained at http://www.boost.org/ or by installing

the corresponding developent packages in Linux. A technical introduction to

programming using Boost is given by Abrahams and Gurtovoy [2004].

Loki: This library provides class templates for implementing type lists and other

metaprogramming techniques as described by Alexandrescu [2001]. It is avail-

able at http://loki-lib.sourceforge.net/.

170

http://www.bdsoft.com/tools/stlfilt.html
http://www.bdsoft.com/tools/stlfilt.html
http://www.boost.org/
http://loki-lib.sourceforge.net/

Intel Threading Buildingblocks: This is a high-level library for multithreaded

programming. It provides C++ classes for thread synchronization, thread cre-

ation, and task-based parallel programming. Sources and precompiled binaries

are available at http://www.threadingbuildingblocks.org/.

Generic compiling instructions

All executables are suffixed with platform and build mode and placed in the bin

directory after compiling. Calling one of the tools on Linux would therefore work

as follows:

> bin/Alignment_posix_gcc_release ...

Scons will try to configure the required libraries and paths automatically, but will

need additional input if the libraries shown above are installed in a non-standard

path. The following sections give some guidance on how to compile on Windows,

Linux or MacOS.

When running Scons for the first time in the source directory, it will print

the name of the options file it wants to use on your system:

> scons -Q configure=1

To use specific options for this system, use options file \

"opts_virtualsettembrini-ubuntu_Linux_x86_64.py"

Using options from opts.py

The options file contains information on additional paths used by the build

system. In most cases, making changes to this file, or supplying an adapted file for

each system you need to compile on should be sufficient. The standard filename

is ’opts.py’, however, the system generates a platform-specific name as well (this

is useful for maintaining different builds in the same directory). Once all paths

and compile flags have been configured correctly (see below for platform-specific

instructions), a release version can be compiled by running:

scons -Q mode=release

171

http://www.threadingbuildingblocks.org/

The executables are assigned a suffix according to platform and build mode (valid

values are release, debug or profile), and are placed in the bin/ subdirectory.

Compiling on Windows

The easiest way to compile on Windows is either using one of the supplied SLN files

(for VC 2005 or VC 2008), or running Scons in a Visual Studio command line. It

might still be necessary to modify the Scons options file. Here is an example.

comment this out if you do not use stlfilt for MSVC

cl_stlfilt = ’"..\\stlfilt\\mfilt.bat"’

uncomment the following line to use MinGw on Windows

toolset = ’gcc’

You can use STLFilt with MinGW, too

gcc_stlfilt = ’gfilt’

You can specify the boost directory if it is not installed in

C:\Boost. If boost is installed in its standard location under

C:\Boost, SCons will find it automatically

win32_boostdir = ’C:\\Users\\peter\\Documents\\Code\\boost_1_36_0’;

This is the path to Loki. You need to unzip, and compile Loki so

the static libraries are available.

You might need to check the loki make scripts so they use the same

runtime library as this code (LIBCMT[D]) to prevent linker warnings

win32_lokidir = ’C:\\Users\\peter\\Documents\\Code\\loki-0.1.6’;

You can get a binary installation of TBB of their website.

Do not forget to copy the static libraries for your system into

win32_tbbdir\\lib (since we can’t guess this from within the

172

scons script)

win32_tbbdir = ’C:\\Users\\peter\\Documents\\Code\\tbb’;

Compiling on Linux or MacOS X

The main entries in the options file are:

toolset = ’gcc’

replace this with ’gfilt’ if you have STLfilt installed

gcc_stlfilt = ’g++’

It is possible to add the libraries to the search path by specifying additional linker

and compiler flags:

additional_cflags = ’ -I/opt/boost/include’

additional_lflags = ’ -L/opt/boost/lib’

Option File Summary

Table C.2: SCons compile options

Option Description Default

mode Build mode: set to debug or release. ’debug’

configure Perform automatic configuration

before build.

0

icc Force using Intel C++ 0

profile Include debug information also in

release version and enable profiling

using gprof.

1

use yasm Use yasm instead of nasm. 1

cl stlfilt Path to STLFilt for MSVC.

gcc stlfilt Path to STLFilt for gcc.

win32 boostdir Path to Boost library on Windows. ’’C:\\Boost\\include’’
Continued on the next page...

173

...continued from last page.

Option Description Default

win32 lokidir Path to Loki library on Windows. ’’C:\\Boost\\include’’
win32 tbbdir Path to TBB library on Windows. ’’C:\\tbb’’
toolset Specify compiler and linker tools:

gcc | icc | default

’default’

simd mode Specify which SIMD instruction set

to use: mmx, sse2 or nommx.

’sse2’

C.4 List of files

Table C.3: “Seaweed code” list of files

Filename Contents

src/checkpoint

checkpoint.h Declarations of the class templates for

checkpointing.

src/gpulib

ATI Gpulib.h Declarations of the GPU-based alignment

plot code.

seaweeds.cpp Implementation of the GPUSeaweeds class

which provides an interface to the GPU-

based alignment plot functions.

seaweeds gpu.br Implementation of the seaweed GPU ker-

nels.

seaweeds gpu.cpp Automatically generated from

seaweeds gpu.br.

Continued on the next page...

174

...continued from last page.

Filename Contents

seaweeds gpu.h Automatically generated from

seaweeds gpu.br.

seaweeds gpu gpu.h Automatically generated from

seaweeds gpu.br.

src/lcs

Llcs.h Implementation of the standard LCS dy-

namic programming algorithm (Wagner

and Fischer [1974])

LlcsCIPR.h Implementation of bit-parallel LCS com-

putation (Crochemore et al. [2001]).

RationalScores.h Conversion functions for converting LCS

lengths to gapped alignment scores.

src/rangesearching

BinTree.h Implementation of range searching using

binary search on a sorted list.

IRange.h Interface definition for data structures

that allow range querying.

Range2D.h Implementation of two-dimensional range

searching datastructures.

RangeBenchmark.h Benchmarking class template to compare

the performance of different range search-

ing datastructure implementations.

RangeBenchmark2D.h Benchmarking class template to com-

pare the performance of different two-

dimensional range searching datastructure

implementations.

Continued on the next page...

175

...continued from last page.

Filename Contents

RangeList.h Implementation of range searching by

linear-time search.

RangeTest.h Unit test to test the correctness of a range

searching data structure implementation.

RangeTest2D.h Unit test to test the correctness of a two-

dimensional range searching data struc-

ture implementation.

RangeTree.h Range searching using a range tree

(see Bentley [1980]; de Berg et al. [2008]).

src/seaweeds

ScoreMatrix.h Definition of the main class to represent

highest-score matrices.

Seaweeds.h Implementation of highest-score matrix

computation using the seaweed algorithm

from Section 6.4.

sm ExplicitStorage.h Implementation of highest-score matrices

in explicit (full O(n2)) representation.

sm ImplicitStorage.h Implementation of highest-score matrices

in implicit representation using the sea-

weed permutation (see Section 3.6).

src/tests

gpulibtesting.cpp Test code for GPU-based alignment plot

computation.

lcstesting.cpp Unit-test for all basic LCS algorithms.

mwwtesting.cpp Unit-tests for the vector library (see Ap-

pendix A).

Continued on the next page...

176

...continued from last page.

Filename Contents

rangecomparison.cpp Performance comparison for the range

searching data structures.

rangecomparison2d.cpp Performance comparison for the two-

dimensional range searching data struc-

tures.

rangetesting.cpp Unit-test for the range searching data

structures.

seaweedtesting.cpp Unit-test for the highest-score matrix

classes.

seaweedtesting reference.cpp Automatically generated from

seaweedtesting.cpp.

Testing.h Generic test class template.

windowlocalcomparison.cpp Benchmark for different algorithms for

subsequence matching.

windowlocaltesting.cpp Unit test for the subsequence matching al-

gorithms.

src/tuning

rangetuning.cpp Tool to determine the cut-off for using lists

rather than trees for range searching.

Timing.h Class template for creating performance

comparisons for different algorithms and

problem sizes.

Tuning.h Class template to optimize a single param-

eter of a given algorithm implementation

to achieve optimal performance.

src/util

Continued on the next page...

177

...continued from last page.

Filename Contents

rs container.h Defines the container class used to store

data in all our range searching data struc-

tures.

src/windowlocal

boasson.h The subsequence matching algorithm by

Boasson et al. [2001], implemented using

our vector library.

naive.h Subsequence matching by LCS Computa-

tion.

naive cipr.h Subsequence matching by bit-parallel LCS

Computation.

report.h Score reporting helper class for subse-

quence matching.

scorematrix.h Subsequence matching using the seaweed

algorithm and highest-score matrices.

seaweeds.h Subsequence matching using the seaweed

algorithm without storing the full highest-

score matrix.

src/windowwindow

alignmentplotcomputation.h Alignment plot computation framework

class.

postprocesswindows.h Postprocessing functions to merge the out-

put of multiple processors into one file.

seaweedoverlap.h Implementation of alignment plots using

the seaweed overlap reduction shown in

Chapter 6.

Continued on the next page...

178

...continued from last page.

Filename Contents

translate and print.h Output helper class for alignment plot

computation.

windowwindowlcs.h Implementation of alignment plot compu-

tation using (bit-parallel) LCS, and using

seaweeds.

src/xasmlib

CharMapping.h Implementation of the CharMapping class,

see Appendix A.

functors.h Helper functor classes to carry out various

unary and binary operations on contain-

ers.

IntegerVector.h Implementation of the IntegerVector

class, see Appendix A.

IntegerVectorFixed.h Specialisations of the IntegerVector

class for 8, 16 and 32-bit word sizes. See

Appendix A.

machineword AMD64.asm See Appendix A.

machineword AMD64 sse2.asm See Appendix A.

machineword x86.asm See Appendix A.

machineword x86 64.asm See Appendix A.

machineword x86 64 mmx.asm See Appendix A.

machineword x86 64 nommx.asm See Appendix A.

machineword x86 64 sse2.asm See Appendix A.

machineword x86 mmx.asm See Appendix A.

machineword x86 nommx.asm See Appendix A.

machineword x86 sse2.asm See Appendix A.

Continued on the next page...

179

...continued from last page.

Filename Contents

Queue.h A small class implementing a priority

queue for 64-bit integers

xasmlib.c See Appendix A.

xasmlib.h See Appendix A.

src

pk config.h Automatically generated configuration

header.

PostprocessWindows.cpp Main file for the PostprocessWindows

tool.

WindowAlignment BSP.cpp Main file for the WindowAlignment tool.

180

Bibliography

David Abrahams and Aleksey K. Gurtovoy. C++ Template Metaprogramming: Con-

cepts, Tools, and Techniques from Boost and Beyond. Addison Wesley, 2004.

ISBN-10: 0321227255.

Michael Abrash. A First Look at the Larrabee New Instructions (LRBni). Dr. Dobb’s

Journal, April 2009. http://www.ddj.com/hpc-high-performance-computing/

216402188.

Advanced Micro Devices Inc. Stream Computing Resources, http://ati.amd.com/

technology/streamcomputing/index.html, 2010.

Alok Aggarwal, Maria Klawe, Shlomo Moran, Peter Shor, and Robert Wilber. Geo-

metric applications of a matrix-searching algorithm. Algorithmica, 2(1):195–208,

1987. doi: 10.1007/BF01840359.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Anal-

ysis of Computer Algorithms. Addison-Wesley, Reading, Mass, 1974. ISBN-10:

0201000296.

Alfred V. Aho, Daniel S. Hirschberg, and Jeffrey D. Ullman. Bounds on the com-

plexity of the longest common subsequence problem. Journal of the ACM, 23:

1–12, 1976. doi: 10.1145/321921.321922.

Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and

Peter Walter. Molecular Biology of the Cell. Garland Science, 5th edition, 2007.

ISBN-10: 0815341067.

181

http://www.ddj.com/hpc-high-performance-computing/216402188
http://www.ddj.com/hpc-high-performance-computing/216402188
http://ati.amd.com/technology/streamcomputing/index.html
http://ati.amd.com/technology/streamcomputing/index.html

David Aldous and Persi Diaconis. Longest increasing subsequences: From patience

sorting to the Baik-Deift-Johansson theorem. Bulletin of the AMS, 36:413–432,

1999. doi: 10.1090/S0273-0979-99-00796-X.

Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design

Patterns Applied. Addison-Wesley, 2001. ISBN-10: 0201704315.

Lloyd Allison and Trevor I. Dix. A bit-string longest-common-subsequence al-

gorithm. Information Processing Letters, 23(6):305–310, 1986. doi: 10.1016/

0020-0190(86)90091-8.

Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures

for orthogonal range searching. In Proceedings of FOCS’00, pages 198–207, 2000.

doi: 10.1109/SFCS.2000.892088.

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J.

Lipman. Basic local alignment search tool. Journal of Molecular Biology, 215:

403–410, 1990. doi: 10.1006/jmbi.1990.9999.

Carlos E. R. Alves, Edson N. Cáceres, Frank K. H. A. Dehne, and Siang W.

Song. Parallel dynamic programming for solving the string editing problem

on a CGM/BSP. In Proceedings of SPAA’02, pages 275–281, 2002. doi:

10.1145/564870.564916.

Carlos E. R. Alves, Edson N. Cáceres, Frank K. H. A. Dehne, and Siang W. Song.

A parallel wavefront algorithm for efficient biological sequence comparison. In

Proceedings of ICCSA’03, volume 2668 of Lecture Notes in Computer Science,

pages 249–258, 2003a. doi: 10.1007/3-540-44843-8 27.

Carlos E. R. Alves, Edson N. Cáceres, and Siang W. Song. A BSP/CGM algorithm

for the all-substrings longest common subsequence problem. In Proceedings of

IPDPS’03, pages 1–8, 2003b. doi: 10.1109/IPDPS.2003.1213150.

182

Carlos E. R. Alves, Edson N. Cáceres, and Siang W. Song. A coarse-grained parallel

algorithm for the all-substrings longest common subsequence problem. Algorith-

mica, 45(3):301–335, 2006. doi: 10.1007/s00453-006-1216-z.

Carlos E. R. Alves, Edson N. Cáceres, and Siang W. Song. An all-substrings common

subsequence algorithm. Discrete Applied Mathematics, 156(7):1025–1035, April

2008. doi: doi:10.1016/j.dam.2007.05.056.

Alberto Apostolico. String editing and longest common subsequences. In Handbook

of Formal Languages, volume 2, pages 361–398. Springer-Verlag, 1997. ISBN:

3-540-60648-3.

Alberto Apostolico and Concettina Guerra. The longest common subsequence prob-

lem revisited. Algorithmica, 2(1):315–336, 1987. doi: 10.1007/BF01840365.

Alberto Apostolico, Mikhail J. Atallah, Lawrence L. Larmore, and Scott McFaddin.

Efficient parallel algorithms for string editing and related problems. SIAM Journal

on Computing, 19(5):968–988, 1990. ISSN 0097-5397. doi: 10.1137/0219066.

Alberto Apostolico, Gad M. Landau, and Steven Skiena. Matching for run-length

encoded strings. Journal of Complexity, 15(1):4–16, 1999. doi: 10.1006/jcom.

1998.0493.

Apple Inc. Apple MacOS X, 2010. http://www.apple.com/macosx/.

Vladimir L. Arlazarov, E. A. Dinic, D. A. Kronrod, and I. A. Faradzev. On econom-

ical construction of the transitive closure of a directed graph. Soviet Mathematics

- Doklady, 11:1209–1210, 1970.

Reuven Bar-Yehuda and Sergio Fogel. Partitioning a sequence into few mono-

tone subsequences. Acta Informatica, 35(5):421–440, 1998. doi: 10.1007/

s002360050126.

Michael Beeler, Ralph William Gosper, and Richard Schroeppel. HAKMEM. Memo

239, Artificial Intelligence Laboratory, MIT, 1972.

183

http://www.apple.com/macosx/

Jon Louis Bentley. Multidimensional divide-and-conquer. Communications of the

ACM, 23(4):214–229, 1980. ISSN 0001-0782. doi: 10.1145/358841.358850.

Sergei Bespamyatnikh and Michael Segal. Enumerating longest increasing subse-

quences and patience sorting. Information Processing Letters, 76:7–11, 2000. doi:

10.1016/S0020-0190(00)00124-1.

Gianfranco Bilardi, Andrea Pietracaprina, Geppino Pucci, and Francesco Silvestri.

Network-oblivious algorithms. In Proceedings of IPDPS’07, pages 1–10. IEEE,

2007. doi: 10.1109/IPDPS.2007.370243.

Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach Using

BSP and MPI. Oxford University Press, 2004. ISBN 0-19-852939-2.

Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.

ISBN 0-262-02313-X.

Guy E. Blelloch, Phillip B. Gibbons, Yossi Matias, and Marco Zagha. Accounting

for memory bank contention and delay in high-bandwidth multiprocessors:. IEEE

Transactions on Parallel and Distributed Systems, 8(9):943–958, 1997. doi: 10.

1109/71.615440.

Guy E. Blelloch, Rezaul Alam Chowdhury, Phillip B. Gibbons, Vijaya Ramachan-

dran, Shimin Chen, and Michael Kozuch. Provably good multicore cache perfor-

mance for divide-and-conquer algorithms. In Shang-Hua Teng, editor, Proceedings

of SODA’08, pages 501–510, 2008. doi: 10.1145/1347082.1347137.

Luc Boasson, Patrick Cégielski, Irène Guessarian, and Yuri Matiyasevich. Window-

accumulated subsequence matching problem is linear. Annals of Pure and Applied

Logic, 113(1–3):59–80, 2001. doi: 10.1016/S0168-0072(01)00051-3.

Olaf Bonorden, Ben Juurlink, Ingo von Otte, and Ingo Rieping. The Paderborn

University BSP (PUB) library. Parallel Computing, 29(2):187—207, 2003. doi:

10.1016/S0167-8191(02)00218-1.

184

Gerth Stølting Brodal. Finger search trees. In D.P. Mehta and S. Sahni, edi-

tors, Handbook of Data Structures and Applications. Chapman& Hall/CRC, 2005.

ISBN-10: 1584884355.

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike

Houston, and Pat Hanrahan. Brook for GPUs: stream computing on graphics

hardware. ACM Transactions on Graphics, 23(3):777–786, 2004. doi: 10.1145/

1186562.1015800.

Horst Bunke and János Csirik. An algorithm for matching run-length coded strings.

Computing, 50(4):297–314, 1993. doi: 10.1007/BF02243873.

Rainer E. Burkard, Bettina Klinz, and Rüdiger Rudolf. Perspectives of Monge

properties in optimization. Discrete Applied Mathematics, 70(2):95–161, 1996.

doi: 10.1016/0166-218X(95)00103-X.

Timothy M. Chan. All-pairs shortest paths with real weights in O(n3/ log n) time.

Algorithmica, 50(2):236–243, 2008. doi: 10.1007/s00453-007-9062-1.

Timothy M. Chan and Mihai Pǎtraşcu. Counting inversions, offline orthogonal range

counting, and related problems. In Proceedings of SODA’10, pages 161–173, 2010.

Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic pro-

gressions. Journal of Symbolic Computation, 9:251–280, 1990. doi: 10.1016/

S0747-7171(08)80013-2.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill

Book Company, 2001. ISBN 0-262-03293-7; 0-07-013151-1.

Maxime Crochemore and Ely Porat. Computing a longest increasing subsequence

of length k in time O(n log log k). In Visions of Computer Science - BCS In-

ternational Academic Conference, 2008, pages 69–74. British Computer Society,

2008. URL http://www.bcs.org/server.php?show=ConWebDoc.22851.

185

http://www.bcs.org/server.php?show=ConWebDoc.22851

Maxime Crochemore, Costas S. Iliopoulos, Yoan J. Pinzon, and James F. Reid.

A fast and practical bit-vector algorithm for the longest common subsequence

problem. Information Processing Letters, 80(6):279–285, 2001. doi: doi:10.1016/

S0020-0190(01)00182-X.

Maxime Crochemore, Gad M. Landau, and Michal Ziv-Ukelson. A sub-quadratic

sequence alignment algorithm for unrestricted cost matrices. In Proceedings of

SODA’02, pages 679–688, Philadelphia, PA, USA, 2002. Society for Industrial

and Applied Mathematics. ISBN 0-89871-513-X.

Maxime Crochemore, Costas S. Iliopoulos, and Yoan J. Pinzon. Speeding-up

Hirschberg and Hunt–Szymanski algorithms for the LCS problem. Fundamenta

Informaticae, 56(1–2):89–103, 2003.

Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on

Strings. Cambridge University Press, New York, NY, USA, 2007. ISBN

0521848997.

Margaret O. Dayhoff, Robert M. Schwartz, and Bruce C. Orcutt. A model of

evolutionary change in proteins. In Margaret O. Dayhoff, editor, Atlas of Protein

Structure, volume 5(Suppl. 3), pages 345–352. National Biomedical Reasearch

Foundation, Silver Spring, Md., 1979.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Compu-

tational Geometry: Algorithms and Applications. Springer, third edition, 2008.

ISBN-10: 3540779736.

Pilar de la Torre and Clyde P. Kruskal. Submachine locality in the bulk syn-

chronous setting. In Proceedings of Euro-Par’96, pages 352–358, 1996. doi:

10.1007/BFb0024723.

Arthur L. Delcher, Simon Kasif, Robert D. Fleischmann, Jeremy Peterson, Owen

White, and Steven L. Salzberg. Alignment of whole genomes. Nucleic Acids

Research, 27(11):2369–2376, 1999.

186

Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of

Mathematics, 51:161–166, 1950.

Ran Duan and Seth Pettie. Fast algorithms for (max, min)-matrix multiplication

and bottleneck shortest paths. In Proceedings of SODA ’09, pages 384–391, 2009.

David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse

dynamic programming I: linear cost functions. Journal of the ACM, 39(3):519–

545, 1992. ISSN 0004-5411. doi: 10.1145/146637.146650.

Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio

Mathematica, 2:463–470, 1935.

Agner Fog. Software optimization resources, 2010. http://agner.org/optimize/.

Steven Fortune and James Wyllie. Parallelism in random access machines. In ACM

Symposium on Theory of Computing (STOC ’78), pages 114–118, New York, 1978.

ACM Press.

Free Software Foundation (FSF). Autoconf - GNU Project, 2010a. http://www.

gnu.org/software/autoconf/.

Free Software Foundation (FSF). Diffutils – gnu project, 2010b. http://www.gnu.

org/software/diffutils/.

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.

Cache-oblivious algorithms. In Proceedings of FOCS’99, pages 285–297. IEEE

Computer Society Press, 1999. doi: 10.1109/SFFCS.1999.814600.

Brent Fulgham. The computer language benchmarks game, 2010. http://

shootout.alioth.debian.org.

Ronald Garcia, Jeremy Siek, and Andrew Lumsdaine. Boost.MultiArray,

2010. http://www.boost.org/doc/libs/1_42_0/libs/multi_array/doc/

index.html.

187

http://agner.org/optimize/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/diffutils/
http://www.gnu.org/software/diffutils/
http://shootout.alioth.debian.org
http://shootout.alioth.debian.org
http://www.boost.org/doc/libs/1_42_0/libs/multi_array/doc/index.html
http://www.boost.org/doc/libs/1_42_0/libs/multi_array/doc/index.html

Thierry Garcia and David Semé. A load balancing technique for some coarse-grained

multicomputer algorithms. In Proceedings of the SCA 21st International Confer-

ence on Computers and Their Applications, Seattle, Washington, USA (CATA06),

pages 301–306, 2006.

A. J. Gibbs and G. A. McIntyre. The diagram: A method for comparing sequences.

Its uses with amino acids and nucleotide sequences. European Journal of Bio-

chemistry, 16:1–11, 1970.

Leslie M. Goldschlager. A unified approach to models of synchronous parallel ma-

chines. Journal of the ACM, 29(4):1073–1086, 1982. doi: 10.1145/800133.804336.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, 1997. ISBN-10: 0521585198.

Dan Gusfield, K. Balasubramanian, and Dalit Naor. Parametric optimization of

sequence alignment. Algorithmica, 12:312–326, 1994. doi: 10.1007/BF01185430.

Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus. The synchronization

power of coalesced memory accesses. In Proceedings of DISC ’08, pages 320–334.

Springer-Verlag, 2008. doi: 10.1007/978-3-540-87779-0 22.

Torben Hagerup. Sorting and searching on the word RAM. In Proceedings of

STACS’98, volume 1373 of LNCS, pages 366–398. Springer-Verlag, 1998. doi:

10.1007/BFb0028575.

John M. Hammersley. A few seedlings of research. In Proceedings of 6th Berkeley

Symposium on Mathematical Statistics and Probability, 1972.

Steven Henikoff and Jorja G. Henikoff. Amino acid substitution matrices from

protein blocks. In Proceedings of the National Academy of Sciences, pages 10915–

10919, 1992. Published as Proc. Natl. Acad. Sci., USA, volume 89, number 22.

Jonathan M. D. Hill, William F. McColl, Dan C. Stefanescu, Mark W. Goudreau,

Kevin Lang, Satish B. Rao, Torsten Suel, Thanasis Tsantilas, and Rob Bisseling.

188

BSPlib: The BSP programming library. Parallel Computing, 24, 1998. doi: 10.

1016/S0167-8191(98)00093-3.

Daniel S. Hirschberg. A linear space algorithm for computing maximal common

subsequences. Communications of the ACM, 18(6):341–343, 1975. ISSN 0001-

0782. doi: 10.1145/360825.360861.

Daniel S. Hirschberg. Algorithms for the longest common subsequence problem.

Journal of the ACM, 24(4):664–675, 1977. doi: 10.1145/322033.322044.

Daniel S. Hirschberg. Serial computation of Levenshtein distances. In A. Apostolico

and Z. Galil, editors, Pattern Matching Algorithms, chapter 4, pages 123–141.

Oxford University Press, 1997. ISBN-10: 0195113675.

James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest

common subsequences. Communications of the ACM, 20(5):350–353, 1977. doi:

10.1145/359581.359603.

Heikki Hyyrö. Bit-parallel LCS-length computation revisited. In Proceedings of

AWOCA’04, 2004.

Heikki Hyyrö, Kimmo Fredriksson, and Gonzalo Navarro. Increased bit-parallelism

for approximate string matching. In Proceedings of Experimental and Efficient

Algorithms, Third International Workshop, WEA 2004, volume 3059 of LNCS,

pages 285–298. Springer, 2004. doi: 10.1007/978-3-540-24838-5 21.

Intel Corp. Intel Cilk++ Software Development Kit, 2010. http://software.

intel.com/en-us/articles/intel-cilk/.

Intel Corporation. http://www.intel.com. URL http://www.intel.com.

Intel Corporation. Intel Architecture Software Developer’s Manual. Intel, 1999a.

URL ftp://download.intel.com/design/PentiumII/manuals/24319002.PDF.

Basic Architecture.

189

http://software.intel.com/en-us/articles/intel-cilk/
http://software.intel.com/en-us/articles/intel-cilk/
http://www.intel.com
http://www.intel.com
ftp://download.intel.com/design/PentiumII/manuals/24319002.PDF

Intel Corporation. Intel Architecture Software Developer’s Manual. Intel, 1999b.

URL ftp://download.intel.com/design/PentiumII/manuals/24319102.PDF.

Instruction Set Reference.

Intel Corporation. Intel Threading Building Blocks Website, 2009. http://www.

threadingbuildingblocks.org/.

Intel Corporation. Intel Threading Building Blocks Reference Manual. Technical

Report Document Number 315415-005US, http://www.intel.com, 2010a.

Intel Corporation. IPP: http://software.intel.com/en-us/intel-ipp/, 2010b.

Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992. ISBN

0-201-54856-9.

Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-Efficient and

Fast Algorithms for Multidimensional Dominance Reporting and Range Count-

ing. In Proceedings ISAAC’04, volume 3341 of LNCS, 2004. doi: 10.1007/

978-3-540-30551-4 49.

Peter Johnson and other Yasm developers. The Yasm Modular Assembler, 2010.

http://www.tortall.net/projects/yasm/.

Henry S. Warren Jr. Hacker’s Delight. Addison-Wesley, 2003. ISBN-10: 0201914654.

Ben H. H. Juurlink and Harry A. G. Wijshoff. The E-BSP Model: Incorporating

General Locality and Unbalanced Communication into the BSP Model. In Pro-

ceedings of Euro-Par’96, Vol. II, pages 339–347, 1996. doi: 10.1007/BFb0024721.

Khronos Group. OpenCL Overview, 2010. http://www.khronos.org/opencl/.

Samir Khuller, Joseph (Seffi) Naor, and Philip N. Klein. The lattice structure of flow

in planar graphs. SIAM Journal on Discrete Mathematics, 6(3):477–490, 1993.

doi: 10.1137/0406038.

190

ftp://download.intel.com/design/PentiumII/manuals/24319102.PDF
http://www.threadingbuildingblocks.org/
http://www.threadingbuildingblocks.org/
http://www.intel.com
http://software.intel.com/en-us/intel-ipp/
http://www.tortall.net/projects/yasm/
http://www.khronos.org/opencl/

Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings

of SODA’05, pages 146–155. SIAM, 2005. ISBN 0-89871-585-7. doi: 10.1145/

1070432.1070454.

Donald E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Search-

ing. Addison-Wesley, Reading, Massachusetts, 1973. ISBN-10: 0201896850.

Jan Krumsiek, Roland Arnold, and Thomas Rattei. Gepard: a rapid and sensitive

tool for creating dotplots on genome scale. Bioinformatics, 23(8):1026–1028, 2007.

doi: 10.1093/bioinformatics/btm039.

Peter Krusche. Experimental evalution of BSP programming libraries. Parallel

Processing Letters, 18(1):7–21, 2005. doi: 10.1142/S0129626408003193.

Peter Krusche and Alexander Tiskin. Efficient longest common subsequence compu-

tation using bulk-synchronous parallelism. In Proceedings of ICCSA’06, vol. (5),

volume 3984 of LNCS, pages 165–174. Springer, 2006. doi: 10.1007/11751649 18.

Peter Krusche and Alexander Tiskin. Efficient parallel string comparison. In Pro-

ceedings of ParCo’07, volume 38 of NIC Series, pages 193–200. John von Neumann

Institute for Computing, 2007. ISBN: 978-3-9810843-4-4.

Peter Krusche and Alexander Tiskin. New Algorithms for Efficient Parallel String

Comparison. In Proceedings of SPAA’10, pages 209–216, 2010. doi: 10.1145/

1810479.1810521.

S. Kiran Kumar and C. Pandu Rangan. A linear space algorithm for the LCS

problem. Acta Informatica, 24(3):353–362, 1987. doi: 10.1007/BF00265993.

Gad M. Landau. Can dist tables be merged in linear time - An Open Problem. In

Proceedings of the Prague Stringology Conference, Prague, Czech Republic, August

28-30, 2006, page 1, 2006.

Charles E. Leiserson. The Cilk++ concurrency platform. In Proceedings of DAC’09,

pages 522–527, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-497-3. doi:

10.1145/1629911.1630048.

191

Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. IEEE

Transactions on Information Theory, 23(1):75–81, 1976. doi: 10.1109/TIT.1976.

1055501.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics - Doklady, 6:707–710, 1966.

Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive homol-

ogy search. Bioinformatics, 18(3):440–445, 2002. doi: 10.1093/bioinformatics/18.

3.440.

Jacob V. Maizel and Robert P. Lenk. Enhanced graphic matrix analysis of nucleic

acid and protein sequences. Proceedings of the National Academy of Sciences of

the USA, 78(12):7665–7669, 1981. doi: 10.1073/pnas.78.12.7665.

Colin L. Mallows. Patience sorting. Bulletin of the Institute of Mathematics and its

Applications, 9:216–224, 1973.

Gurmeet Singh Manku. Puzzle: Fast bit counting, 2010. http://gurmeetsingh.

wordpress.com/2008/08/05/fast-bit-counting-routines/.

William J. Masek and Michael S. Paterson. A faster algorithm computing string

edit distances. Journal of Computer and System Sciences, 20:18–31, 1980. doi:

10.1016/0022-0000(80)90002-1.

William F. McColl. General Purpose Parallel Computing. In A. M. Gibbons and

P. Spirakis, editors, Lectures on Parallel Computation, Proceedings of the 1991

ALCOM Spring School on Parallel Computation, pages 337–391. Cambridge Uni-

versity Press, 1993. ISBN-10: 052141556X.

William F. McColl. Scalable Computing. In J. van Leeuwen, editor, Computer

Science Today: Recent Trends and Developments, volume 1000 of LNCS, pages

46–61. Springer-Verlag, 1995. ISBN-10: 3540601058.

Edward M. McCreight. A space-economical suffix tree construction algorithm. Jour-

nal of the ACM, 23(2):262–272, 1976. doi: 10.1145/321941.321946.

192

http://gurmeetsingh.wordpress.com/2008/08/05/fast-bit-counting-routines/
http://gurmeetsingh.wordpress.com/2008/08/05/fast-bit-counting-routines/

Microsoft Corporation. Microsoft Windows, 2010. http://www.microsoft.com/

WINDOWS/.

Ernst A. Munter. U.S. Patent 5,216,420, June 1993.

Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,

1(1):251–266, 1986. doi: 10.1007/BF01840446.

Takaaki Nakashima and Akihiro Fujiwara. A cost optimal parallel algorithm for

patience sorting. Parallel Processing Letters, 16(1):39–52, 2006. doi: 10.1142/

S0129626406002459.

Narao Nakatsu, Yahiko Kambayashi, and Shuzo Yajima. A longest common sub-

sequence algorithm suitable for similar text strings. Acta Informatica, 18(2):

171–179, 1982. doi: 10.1007/BF00264437.

Saul B. Needleman and Christian D. Wunsch. A general method applicable to

the search of similarities in the amino acid sequence of two proteins. Journal of

Molecular Biology, 48:443–453, 1970. doi: 10.1016/0022-2836(70)90057-4.

NVIDIA Corporation. Cuda zone: http://www.nvidia.com/object/cuda_home.

html, 2009.

NVIDIA Corporation. NVIDIA CUDA SDK Code Samples, 2010.

http://developer.download.nvidia.com/compute/cuda/sdk/website/

samples.html.

OpenMP Architecture Review Board. OpenMP: http://www.openmp.org/, 2010.

URL http://www.openmp.org/.

Sascha Ott, S. Gunawardana, Mike Downey, and Georgy Koentges. Loss-free iden-

tifcation of alignment-conserved CRMs. In preparation., 2009.

Yi Pan. Basic Data Movement Operations on the LARPBS Model. In Parallel

Computing Using Optical Interconnections, pages 227–247. Springer, 1998. doi:

10.1007/978-0-585-27268-9 11.

193

http://www.microsoft.com/WINDOWS/
http://www.microsoft.com/WINDOWS/
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html
http://www.openmp.org/
http://www.openmp.org/

Wolfgang J. Paul, Peter Bach, Michael Bosch, Jörg Fischer, Cédric Lichtenau, and

Jochen Röhrig. Real pram programming. In Proceedings of Euro-Par 2002, volume

2400 of LNCS, pages 522–531, Paderborn, Germany, 2002. Springer. doi: 10.1007/

3-540-45706-2 71.

Emma Picot, Alexander Tiskin, Paul Brown, Peter Krusche, Isabelle Carré, and

Sascha Ott. Evolutionary analysis of regulatory sequences (EARS) in plants. The

Plant Journal, 64(1):165–176, 2010a. doi: 10.1111/j.1365-313X.2010.04314.x.

Emma Picot, Alexander Tiskin, Paul Brown, Peter Krusche, Isabelle Carré, and

Sascha Ott. Ears: Evolutionary analysis of regulatory sequences, 2010b. http:

//wsbc.warwick.ac.uk/ears/main.php.

David R. Powell, Lloyd Allison, and Trevor I. Dix. Fast, optimal alignment of three

sequences using linear gap costs. Journal of Theoretical Biology, 207(3):325–336,

2000. doi: 10.1006/jtbi.2000.2177.

Vaughan R. Pratt, Michael O. Rabin, and Larry J. Stockmeyer. A characterization

of the power of vector machines. In Proceedings of STOC’74, pages 122–134.

ACM, 1974. doi: 10.1145/800119.803892.

PUB library . http://www.uni-paderborn.de/~bsp/. URL http://www.

uni-paderborn.de/~bsp/.

Michael J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill

Education Group, 2003. ISBN 0071232656.

Vijaya Ramachandran. Foundations of Software Technology and Theoretical Com-

puter Science, chapter QSM: A general purpose shared-memory model for par-

allel computation, pages 1–5. Springer Berlin/Heidelberg, 1997. doi: 10.1007/

BFb0058018.

Kim R. Rasmussen, Jens Stoye, and Eugene W. Myers. Efficient q-gram filters for

finding all epsilon-matches over a given length. Journal of Computational Biology,

13(2):296–308, 2006. doi: 10.1089/cmb.2006.13.296.

194

http://wsbc.warwick.ac.uk/ears/main.php
http://wsbc.warwick.ac.uk/ears/main.php
http://www.uni-paderborn.de/~bsp/
http://www.uni-paderborn.de/~bsp/
http://www.uni-paderborn.de/~bsp/

Laurence Rauchwerger, Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim-

mie G. Smith, Gabriel Tanase, Nathan Thomas, and Nancy M. Amato. STAPL:

An adaptive, generic parallel C++ library. In Proceedings of LCPC’01, volume

2624 of LNCS, pages 193–208. Springer, 2001. doi: 10.1007/3-540-35767-X 13.

Peter Rice, Ian Longden, and Alan Bleasby. EMBOSS: The European molecular

biology open software suite. Trends in Genetics, 16(6):276–277, 2000. doi: 10.

1016/S0168-9525(00)02024-2.

Claus Rick. A new flexible algorithm for the longest common subsequence problem.

Nordic Journal of Computing, 2(4):444–461, 1995.

Claus Rick. Simple and fast linear space computation of longest common subse-

quences. Information Processing Letters, 75(6):275–281, 2000. doi: 10.1016/

S0020-0190(00)00114-9.

Bruce Eli Sagan. The symmetric group. Springer, second edition, 2010. ISBN-10:

1441928693.

Craige Schensted. Longest increasing and decreasing subsequences. Canadian Jour-

nal of Mathematics, 13:179–191, 1961.

Jeanette P. Schmidt. All highest scoring paths in weighted grid graphs and their

application to finding all approximate repeats in strings. SIAM Journal on Com-

puting, 27(4):972–992, 1998. doi: 10.1137/S0097539795288489.

Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Pradeep Dubey, Stephen

Junkins, Adam Lake, Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan,

Michael Abrash, Jeremy Sugerman, and Pat Hanrahan. Larrabee: A many-core

x86 architecture for visual computing. IEEE Micro, 29(1):10–21, 2009. doi: 10.

1109/MM.2009.9.

David Semé. A CGM algorithm solving the longest increasing subsequence prob-

lem. In Proceedings of ICCSA’06, Part V, volume 3984 of Lecture Notes in

195

Computer Science, pages 10–21. Springer, 2006. ISBN 3-540-34079-3. doi:

10.1007/11751649 2.

David Semé and Sideny Youlou. An Efficient Parallel Algorithm for the Longest In-

creasing Subsequence Problem on a LARPBS. In Proceedings of the International

Conference on Parallel and Distributed Computing Applications and Technologies,

pages 251–258. IEEE Computer Society, 2007. doi: 10.1109/PDCAT.2007.74.

Hanmao Shi and Jonathan Schaeffer. Parallel sorting by regular sampling. Jour-

nal of Parallel and Distributed Computing, 14(4):361–372, 1992. doi: 10.1016/

0743-7315(92)90075-X.

David B. Skillicorn, Jonathan M. D. Hill, and William F. McColl. Questions and

answers about BSP. Scientific Programming, 6(3):249–274, 1997.

Marc Snir, Steve W. Otto, David W. Walker, Jack Dongarra, and Steven Huss-

Lederman. MPI: The Complete Reference. MIT Press, Cambridge, MA, USA,

1995. ISBN 0262691841.

Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:

354–356, 1969.

Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, 1987.

Wijnand J. Suijlen and Rob H. Bisseling. BSPonMPI, 2010. http://bsponmpi.

sourceforge.net/.

The Arabidopsis Information Resource (TAIR). Arabidopsis gene AT5G61380, 2010.

http://arabidopsis.org/servlets/TairObject?id=133196&type=locus.

The Framewave Group. Project homepage: http://framewave.sourceforge.

net/, 2009.

The SCons Foundation. SCons: A software construction tool, 2010. http://www.

scons.org/.

196

http://bsponmpi.sourceforge.net/
http://bsponmpi.sourceforge.net/
http://arabidopsis.org/servlets/TairObject?id=133196&type=locus
http://framewave.sourceforge.net/
http://framewave.sourceforge.net/
http://www.scons.org/
http://www.scons.org/

The University of Warwick. The Centre for Scientific Computing, The University

of Warwick, http://www.csc.warwick.ac.uk, 2009.

Alexander Tiskin. Efficient representation and parallel computation of string-

substring longest common subsequences. In Proceedings of ParCo’05, volume 33

of NIC Series, pages 827–834. John von Neumann Institute for Computing, 2005.

ISBN: 3-00-017352-8.

Alexander Tiskin. Longest common subsequences in permutations and maximum

cliques in circle graphs. In Proceedings of CPM, volume 4009 of LNCS, pages

270–281, 2006. doi: 10.1007/11780441 25.

Alexander Tiskin. Semi-local longest common subsequences in subquadratic time.

Journal of Discrete Algorithms, 6(4):570–581, 2008a. doi: 10.1016/j.jda.2008.07.

001.

Alexander Tiskin. Semi-local string comparison: Algorithmic techniques and

applications. Mathematics in Computer Science, 1(4):571–603, 2008b. doi:

10.1007/s11786-007-0033-3. See also arXiv: 0707.3619.

Alexander Tiskin. Semi-local string comparison: Algorithmic techniques and appli-

cations. Book draft, arXiv: 0707.3619, 2010a.

Alexander Tiskin. Fast distance multiplication of unit-Monge matrices. In Proceed-

ings of SODA’10, pages 1287–1296, 2010b.

Alexandre Tiskin. The bulk-synchronous parallel random access machine. Theoret-

ical Computer Science, 196(1–2):109–130, 1998. doi: doi:10.1016/S0304-3975(97)

00197-7.

Esko Ukkonen. Algorithms for approximate string matching. Information and Con-

trol, 64(1–3):100–118, 1985. doi: 10.1016/S0019-9958(85)80046-2.

Leslie G. Valiant. A bridging model for parallel computation. Communications of

the ACM, 33(8):103–111, 1990. ISSN 0001-0782. doi: 10.1145/79173.79181.

197

http://www.csc.warwick.ac.uk

Leslie G. Valiant. A bridging model for multi-core computing. In Dan Halperin and

Kurt Mehlhorn, editors, Proceedings of the European Symposia on Algorithms

(ESA’08), volume 5193 of LNCS, pages 13–28. Springer, 2008. doi: 10.1007/

978-3-540-87744-8 2.

David Vandevoorde and Nicolai M. Josuttis. C++ Templates: The Complete Guide.

Addison-Wesley, 2003. ISBN 0-201-73484-2.

Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.

Journal of the ACM, 21(1):168–173, 1974. ISSN 0004-5411. doi: 10.1145/321796.

321811.

Xingzhi Wen and Uzi Vishkin. The XMT FPGA prototype/cycle-accurate-simulator

hybrid. In The 3rd Workshop on Architectural Research Prototyping, WARP08,

2008. June 21-22, 2008, Beijing, China, held in conjunction with ISCA 2008.

Wikipedia. Wikipedia: Linux, 2010. http://en.wikipedia.org/wiki/Linux.

Sun Wu, Udi Manber, Eugene W. Myers, and Webb Miller. An O(NP) sequence

comparison algorithm. Information Processing Letters, 35(6):317–323, 1990. doi:

10.1016/0020-0190(90)90035-V.

198

http://en.wikipedia.org/wiki/Linux

	List of Tables
	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Abbreviations
	Chapter Introduction
	Chapter Engineering Parallel Algorithms
	Models of parallel computation
	The BSP model and its variants
	Our model
	Implementing parallel algorithms

	Chapter An Introduction to Semi-local String Comparison
	Overview
	Integers, matrices and permutations
	Monge matrices
	Longest common subsequences
	Semi-local string comparison and the seaweed algorithm
	Seaweeds as permutations
	Highest-score matrix composition

	Chapter Parallel String Comparison
	Background
	Parallel unit-Monge matrix multiplication in O(1) supersteps
	Parallel unit-Monge matrix multiplication in O(logp) supersteps
	Parallel LCS computation
	Parallel permutation string comparison

	Chapter Parameterized Semi-local String Comparison
	Background
	The transposition network method
	Sparse semi-local string comparison
	Semi-local LCS computation for run-length compressed strings
	High similarity and dissimilarity string comparison

	Chapter Computing Alignment Plots Efficiently
	Background
	String alignments with pairwise scores
	Alignment plots
	A data-parallel alignment plot algorithm using only vertical vector operations
	A data-parallel alignment plot algorithm for graphics processors
	Reducing redundant computation for small window sizes
	A coarse-grained parallel algorithm
	Experimental results

	Chapter Conclusion and Outlook
	Summary
	Outlook

	Appendix A vector library using MMX/SSE
	Introduction
	Programmer's interface
	Class IntegerVector
	Class CharMapping

	Vector operations and their efficient implementation
	Addition with carry
	Vector addition
	Vector shifting
	Specialized implementation for 8-bit and 16-bit words
	Manipulating slices of vectors

	Vector library list of files

	Appendix A BSP library for C++
	Introduction
	Extending BSPonMPI
	C++ library design
	BSP library list of files

	Appendix Alignment Plot Code Documentation
	Introduction
	The alignment plot tools
	Compiling the code
	List of files

