Efficient Longest Common Subsequence Computation using Bulk-Synchronous Parallelism

Peter Krusche

Department of Computer Science University of Warwick

June 2006

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Outline

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

- Motivation
- The BSP Model

Problem Definition and Algorithms

- The Standard Algorithm
- Standard Algorithm
- Bit-Parallel Algorithm
- The Parallel Algorithm

3 Experiments

- Experiment Setup
- Predictions
- Speedup

Motivation

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Computing the (Length of the) Longest Common Subsequence is representative of a class of dynamic programming algorithms for string comparison. Hence, we want to

- Start with a fast sequential algorithm.
- Examine the suitability of BSP as a programming model for such problems.
- Compare different BSP libraries on different systems.
- Examine performance predictability.

The BSP Computer

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

- *p* identical processor/memory pairs (computing nodes), computation speed *f*
- Arbitrary interconnection network, latency l, bandwidth g

BSP Programs

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

- Programs are SPMD
- Execution takes place in *supersteps*
 - Communication may be delayed until the end of the superstep
 - Separates communication and computation
- Cost/Running time Formula :

$$T = f \cdot W + g \cdot H + l \cdot S$$

BSP Programs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

- Programs are SPMD
- Execution takes place in *supersteps*
 - Communication may be delayed until the end of the superstep
 - Separates communication and computation
- Cost/Running time Formula :

$$T = f \cdot W + g \cdot H + l \cdot S$$

BSP Programming

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

'BSP-style' programming using a conventional communications library (MPI/Cray shmem/...)

- Barrier synchronizations for creating superstep structure
- Message passing or remote memory access for communication

Using a specialized library (The Oxford BSP Toolset/PUB/CGMlib/...)

- Optimized barrier synchronization functions and message routing
- Higher level of abstraction / nicer looking code.

BSP Programming

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

'BSP-style' programming using a conventional communications library (MPI/Cray shmem/...)

- Barrier synchronizations for creating superstep structure
- Message passing or remote memory access for communication

Using a specialized library (The Oxford BSP Toolset/PUB/CGMlib/...)

- Optimized barrier synchronization functions and message routing
- Higher level of abstraction / nicer looking code.

Previous Work

Daniel S. Hirschberg.

A linear space algorithm for computing maximal common subsequences.

Communications of the ACM, 18(6):341–343, 1975.

- Maxime Crochemore, Costas S. Iliopoulos, Yoan J. Pinzon, and James F. Reid.
 - A fast and practical bit-vector algorithm for the Longest Common Subsequence problem.

Information Processing Letters, 80(6):279–285, 2001.

C. E. R. Alves, E. N. Cáceres, and F. Dehne.

Parallel dynamic programming for solving the string editing problem on a CGM/BSP.

In Proceedings of the 14th Annual ACM symposium on Parallel Algorithms and Architectures, pp. 275–281, 2002.

Previous Work

Daniel S. Hirschberg.

A linear space algorithm for computing maximal common subsequences.

Communications of the ACM, 18(6):341–343, 1975.

Maxime Crochemore, Costas S. Iliopoulos, Yoan J. Pinzon, and James F. Reid.

A fast and practical bit-vector algorithm for the Longest Common Subsequence problem.

Information Processing Letters, 80(6):279–285, 2001.

C. E. R. Alves, E. N. Cáceres, and F. Dehne.

Parallel dynamic programming for solving the string editing problem on a CGM/BSP.

In Proceedings of the 14th Annual ACM symposium on Parallel Algorithms and Architectures, pp. 275–281, 2002.

Previous Work

Daniel S. Hirschberg.

A linear space algorithm for computing maximal common subsequences.

Communications of the ACM, 18(6):341–343, 1975.

Maxime Crochemore, Costas S. Iliopoulos, Yoan J. Pinzon, and James F. Reid.

A fast and practical bit-vector algorithm for the Longest Common Subsequence problem.

Information Processing Letters, 80(6):279–285, 2001.

C. E. R. Alves, E. N. Cáceres, and F. Dehne.

Parallel dynamic programming for solving the string editing problem on a CGM/BSP.

In Proceedings of the 14th Annual ACM symposium on Parallel Algorithms and Architectures, pp. 275–281, 2002.

Problem Definition

Definition (Input data)

Let $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ be two strings on an alphabet Σ of constant size.

Definition (Subsequences)

A *Subsequence U* of *X*: *U* can be obtained by deleting zero or more elements from *X*.

Definition (Longest Common Subsequences)

A *LCS* (X, Y) is any string which is subsequence of both X and Y and has maximum possible length. Length of these sequences: *LLCS* (X, Y).

Problem Definition

Definition (Input data)

Let $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ be two strings on an alphabet Σ of constant size.

Definition (Subsequences)

A *Subsequence U* of *X*: *U* can be obtained by deleting zero or more elements from *X*.

Definition (Longest Common Subsequences) A *LCS* (*X*, *Y*) is any string which is subsequence of both *X* and *Y* and has maximum possible length. Length of these sequences: *LLCS* (*X*, *Y*).

Problem Definition

Definition (Input data)

Let $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ be two strings on an alphabet Σ of constant size.

Definition (Subsequences)

A *Subsequence U* of *X*: *U* can be obtained by deleting zero or more elements from *X*.

Definition (Longest Common Subsequences)

A LCS (X, Y) is any string which is subsequence of both X and Y and has maximum possible length. Length of these sequences: LLCS (X, Y).

The Dynamic Programming Matrix

Definition (Matrix *L*_{0...m}, 0...n)

$$L_{i,j} = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ L_{i-1,j-1} + 1 & \text{if } x_i = y_j, \\ max(L_{i-1,j}, L_{i,j-1}) & \text{if } x_i \neq y_j . \end{cases}$$

Theorem (Hirschberg, '75)

 $L_{i,j} = LLCS(x_1x_2...x_i, y_1y_2...y_j)$. The values in this matrix can be computed in O(mn) time and space.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

Bit-Parallel Algorithm

Bit-parallel computation has same asymptotic complexity but processes ω entries of *L* in parallel (ω : machine word size).

Example (this leads to substantial speedup)

How does it work?

• $\Delta L(i, j) = L(i, j) - L(i - 1, j) \in \{0, 1\}$

 ΔL(i, j) is computed columnwise using machine-word parallel operations :

$$\sim \Delta L(i, j) \leftarrow (\sim \Delta L(i, j) + (\sim \Delta L(i, j - 1) \text{ and } M(x_j)))$$

or (~ $\Delta L(i, j - 1) \text{ and} (\sim M(x_j)))$

M maps characters to bit strings of length m,

$$M(\sigma \in \Sigma)_i = 1 \Leftrightarrow x_i = \sigma$$

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 = つへぐ

How does it work?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

- $\Delta L(i, j) = L(i, j) L(i 1, j) \in \{0, 1\}$
- ΔL(i, j) is computed columnwise using machine-word parallel operations :

$$\sim \Delta L(i, j) \leftarrow (\sim \Delta L(i, j) + (\sim \Delta L(i, j - 1) \text{ and } M(x_j)))$$

or $(\sim \Delta L(i, j - 1) \text{ and} (\sim M(x_j)))$

M maps characters to bit strings of length m,

$$M(\sigma \in \Sigma)_i = 1 \Leftrightarrow x_i = \sigma$$

How does it work?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

- $\Delta L(i, j) = L(i, j) L(i 1, j) \in \{0, 1\}$
- ΔL(i, j) is computed columnwise using machine-word parallel operations :

$$\sim \Delta L(i,j) \leftarrow (\sim \Delta L(i,j) + (\sim \Delta L(i,j-1) \text{ and } M(x_j)))$$

or $(\sim \Delta L(i,j-1) \text{ and} (\sim M(x_j)))$

• M maps characters to bit strings of length m,

$$M(\sigma \in \Sigma)_i = 1 \Leftrightarrow x_i = \sigma$$

The Parallel Algorithm

- Matrix L is partitioned into a grid of rectangular blocks of size (m/G) × (n/G) (G : grid size)
- Blocks in a wavefront can be processed in parallel
- Assumptions:
 - Strings of equal length m = n
 - Ratio $\alpha = \frac{G}{p}$ is an integer

The Parallel Algorithm

- Matrix L is partitioned into a grid of rectangular blocks of size (m/G) × (n/G) (G : grid size)
- Blocks in a wavefront can be processed in parallel
- Assumptions:
 - Strings of equal length m = n
 - Ratio $\alpha = \frac{G}{p}$ is an integer

The Parallel Algorithm

- Matrix L is partitioned into a grid of rectangular blocks of size (m/G) × (n/G) (G : grid size)
- Blocks in a wavefront can be processed in parallel
- Assumptions:
 - Strings of equal length m = n
 - Ratio $\alpha = \frac{G}{p}$ is an integer

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

Parallel Cost Model

- When G > p, there can be multiple stages for one block-wavefront
- Running time

$$T(\alpha) = f \cdot (p\alpha(\alpha+1) - \alpha) \cdot \left\lceil \frac{n}{\alpha p} \right\rceil^{2} + g \cdot \alpha(\alpha p - 1) \left\lceil \frac{n}{\alpha p} \right\rceil + l \cdot (2\alpha p - 1) \cdot \alpha$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Experiments: Systems Used

- aracari: IBM cluster, 2-way SMP Pentium3 1.4 GHz nodes (Myrinet 2000)
- **argus:** Linux cluster, 2-way SMP Pentium4 Xeon 2.6 GHz nodes (100Mbit Ethernet)
- **skua:** SGI Altix shared memory machine, Itanium-2 1.6 GHz processors

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Experimental values of f and f'

Simple Algorithm (f)

skua	0.008 ns/op	130 M op/s
argus	0.016 ns/op	61 M op/s
aracari	0.012 ns/op	86 M op/s

Bit-Parallel Algorithm (f')

skua	0.00022 ns/op	4.5 G op/s
argus	0.00034 ns/op	2.9 G op/s
aracari	0.00055 ns/op	1.8 G op/s

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Prediction Results Good Results (LLCS) ... (e.g. aracari MPI, 32 processors)

Good Predictions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○

- ... on all distributed memory systems, using both bit-parallel and standard algorithm
- ... on the shared memory system only for larger problem sizes, and for the standard algorithm

Prediction Results

Not so good ones... (Oxtool, skua, 32 processors)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

What happened?

Cache size effects prevent prediction of computation time...

Sequential computation performance on **skua**

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Other Problems when Predicting Performance

- Setup costs only covered by parameter l
 - ⇒ difficult to measure
 - ⇒ Problems when communication size is small
- PUB has performance break-in when communication size reaches a certain value

 Busy communication network can create 'spikes'

Speedup for the Bit-Parallel Version

- Speedup lower than for the standard version
- However, overall running times for same problem sizes are shorter
- Can only expect parallel speedup for larger problem sizes
- Latency is problematic, as computation times are low.

Result Summary

▲□▶▲圖▶▲≣▶▲≣▶ 差 のQ@

Shared memory (sku	Oxtool a)	PUB	MPI
LLCS (standard) LLCS (bit-parallel)	•••	•	••
	•••	••	•
	•••	•••	•

Result Summary

◆□ > < @ > < E > < E > E のQ@

Shared memory (sku	Oxtool a)	PUB	MPI
LLCS (standard) LLCS (bit-parallel)	•••	•	••
Distributed memory,	Ethernet (argu	s)	
LLCS (standard) LLCS (bit-parallel)	•••	••	•
	•••	•••	•

Result Summary

◆□ > < @ > < E > < E > E のQ@

Shared memory (skua	Oxtool	PUB	MPI
	·		
LLCS (standard)	•••	•	••
LLCS (bit-parallel)	••	•••	•
Distributed memory, E	thernet (argu	is)	
LLCS (standard)	•••	••	•
LLCS (bit-parallel)	•••	••	٠
Distributed memory, M	lyrinet (araca	nri)	
LLCS (standard)	•••	••	•
LLCS (bit-parallel)	••	•••	•

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

- BSP algorithms are efficient for dynamic programming.
- Implementations benefit from a low latency implementation (Oxtool/PUB)
- Very good predictability

Outlook

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Technical improvements

- Different modeling of bandwidth allows better predictions
- Using assembly can double bit-parallel performance
- Lower latency possible by using subgroup synchronization

Algorithmic improvements

- Extraction of LCS possible, using post processing step or other algorithm
- Implementation of all-substrings LLCS (which has many applications)
- Design and study of subquadratic algorithms

Outlook

Technical improvements

- Different modeling of bandwidth allows better predictions
- Using assembly can double bit-parallel performance
- Lower latency possible by using subgroup synchronization

Algorithmic improvements

- Extraction of LCS possible, using post processing step or other algorithm
- Implementation of all-substrings LLCS (which has many applications)
- Design and study of subquadratic algorithms