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Motivation

Computing the (Length of the) Longest Common
Subsequence is representative of a class of dynamic
programming algorithms for string comparison. Hence,
we want to

Start with a fast sequential algorithm.
Examine the suitability of BSP as a programming
model for such problems.
Compare different BSP libraries on different
systems.
Examine performance predictability.



The BSP Computer

p identical processor/memory pairs (computing
nodes), computation speed ƒ

Arbitrary interconnection network, latency ,
bandwidth g

M M M M M

Network

P1 P2 Pp...



BSP Programs

Programs are SPMD
Execution takes place in supersteps

Communication may be delayed until the end of the
superstep
Separates communication and computation

Cost/Running time Formula :

T = ƒ ·W + g ·H+  · S
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BSP Programming

‘BSP-style’ programming using a conventional
communications library (MPI/Cray shmem/...)

Barrier synchronizations for creating superstep structure

Message passing or remote memory access for
communication

Using a specialized library (The Oxford BSP
Toolset/PUB/CGMlib/...)

Optimized barrier synchronization functions and
message routing

Higher level of abstraction / nicer looking code.
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Problem Definition

Definition (Input data)
Let X = 12 . . . m and Y = y1y2 . . . yn be two strings on
an alphabet  of constant size.

Definition (Subsequences)
A Subsequence U of X: U can be obtained by deleting
zero or more elements from X.

Definition (Longest Common Subsequences)
A LCS (X, Y) is any string which is subsequence of both
X and Y and has maximum possible length. Length of
these sequences: LLCS (X, Y).
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The Dynamic Programming Matrix

Definition (Matrix L0...m,0...n)

L,j =







0 if  = 0 or j = 0,
L−1,j−1 + 1 if  = yj,
m(L−1,j, L,j−1) if  6= yj .

Theorem (Hirschberg, ’75)
L,j = LLCS(12 . . . , y1y2 . . . yj). The values in this
matrix can be computed in O(mn) time and space.



Bit-Parallel Algorithm
Bit-parallel computation has same asymptotic
complexity but processes ω entries of L in parallel (ω :
machine word size).

Example (this leads to substantial speedup)

100 10 k
Sequence length [char]

1 M

100 M

10 G

ch
ar

 o
ps

/s

Standard LLCS
Bit-parallel LLCS



How does it work?

ΔL(, j) = L(, j)− L(− 1, j) ∈ {0,1}
ΔL(, j) is computed columnwise using
machine-word parallel operations :

s ΔL(, j) ← (s ΔL(, j) +
(s ΔL(, j− 1) nd M(j)))
or (s ΔL(, j− 1) nd(sM(j)))

M maps characters to bit strings of length m,

M(σ ∈ ) = 1⇔  = σ
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The Parallel Algorithm

Matrix L is partitioned into a grid of
rectangular blocks of size
(m/G)× (n/G) (G : grid size)
Blocks in a wavefront can be
processed in parallel
Assumptions:

Strings of equal length m = n
Ratio α = G

p is an integer
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Parallel Cost Model

When G > p, there can be multiple
stages for one block-wavefront
Running time

T(α) = ƒ · (pα(α + 1)− α) ·
�

n

αp

�2

+ g · α(αp− 1)
�

n

αp

�

+  · (2αp− 1) · α



Experiments: Systems Used

aracari: IBM cluster, 2-way SMP Pentium3 1.4 GHz
nodes (Myrinet 2000)
argus: Linux cluster, 2-way SMP Pentium4 Xeon 2.6
GHz nodes (100Mbit Ethernet)
skua: SGI Altix shared memory machine, Itanium-2
1.6 GHz processors



Experimental values of ƒ and ƒ ′

Simple Algorithm (ƒ )
skua 0.008 ns/op 130 M op/s
argus 0.016 ns/op 61 M op/s
aracari 0.012 ns/op 86 M op/s

Bit-Parallel Algorithm (ƒ ′)
skua 0.00022 ns/op 4.5 G op/s
argus 0.00034 ns/op 2.9 G op/s
aracari 0.00055 ns/op 1.8 G op/s



Prediction Results
Good Results (LLCS) . . . (e.g. aracari MPI, 32

processors)
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Good Predictions

. . . on all distributed memory systems,
using both bit-parallel and standard
algorithm
. . . on the shared memory system only
for larger problem sizes, and for the
standard algorithm



Prediction Results
Not so good ones. . . (Oxtool, skua, 32 processors)
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What happened?

Cache size effects prevent prediction of computation
time. . .

Sequential
computation
performance on
skua

1 100 10 k 1 M
Sequence length [char]
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Bit parallel LLCS
LLCS
4.4G char/s
64M char/s
130M char/s



Other Problems when Predicting
Performance

Setup costs only covered by parameter 
⇒ difficult to measure
⇒ Problems when communication size is small

PUB has performance break-in when
communication size reaches a certain value
Busy communication network can create
‘spikes’



Speedup for the Bit-Parallel
Version

Speedup lower than for the standard version
However, overall running times for same
problem sizes are shorter
Can only expect parallel speedup for larger
problem sizes
Latency is problematic, as computation times
are low.



Result Summary

Oxtool PUB MPI
Shared memory (skua)

LLCS (standard) ••• • ••
LLCS (bit-parallel) •• ••• •

Distributed memory, Ethernet (argus)

LLCS (standard) ••• •• •
LLCS (bit-parallel) ••• •• •

Distributed memory, Myrinet (aracari)

LLCS (standard) ••• •• •
LLCS (bit-parallel) •• ••◦ •
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Summary

BSP algorithms are efficient for dynamic
programming.
Implementations benefit from a low latency
implementation (Oxtool/PUB)
Very good predictability



Outlook

Technical improvements

Different modeling of bandwidth allows better
predictions
Using assembly can double bit-parallel performance
Lower latency possible by using subgroup
synchronization

Algorithmic improvements

Extraction of LCS possible, using post processing
step or other algorithm
Implementation of all-substrings LLCS (which has
many applications)
Design and study of subquadratic algorithms
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