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Motivation

Computing the (Length of the) Longest Common
Subsequence is representative of a class of dynamic
programming algorithms for string comparison. Hence,
we want to

@ Start with a fast sequential algorithm.

@ Examine the suitability of BSP as a programming
model for such problems.

@ Compare different BSP libraries on different
systems.

@ Examine performance predictability.



The BSP Computer

@ p identical processor/memory pairs (computing
nodes), computation speed f

@ Arbitrary interconnection network, latency [,
bandwidth g
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BSP Programs

e Programs are SPMD

e Execution takes place in supersteps
e Communication may be delayed until the end of the
superstep
@ Separates communication and computation
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e Programs are SPMD

e Execution takes place in supersteps

e Communication may be delayed until the end of the
superstep
@ Separates communication and computation

e Cost/Running time Formula :

T=f-W+g-H+L[-5S
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BSP Programming

‘BSP-style’ programming using a conventional
communications library (MPI/Cray shmem/...)

@ Barrier synchronizations for creating superstep structure

@ Message passing or remote memory access for
communication

Using a specialized library (The Oxford BSP
Toolset/PUB/CGMIib/...)

@ Optimized barrier synchronization functions and
message routing

@ Higher level of abstraction / nicer looking code.
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Problem Definition

Definition (Input data)

Let X=Xx1X2...Xxmand Y =yi1y>...yn be two strings on
an alphabet Z of constant size.

Definition (Subsequences)

A Subsequence U of X: U can be obtained by deleting
zero or more elements from X.

Definition (Longest Common Subsequences)

A LCS (X, Y) is any string which is subsequence of both
X and Y and has maximum possible length. Length of
these sequences: LLCS (X, Y).




The Dynamic Programming Matrix

Definition (Matrix Lo...m,0...n)

0 ifi=0o0rj=0,
Lij=1qLi-1,j-1+1 if xi = yj,
max(Li-1,, Lij-1) ifxi#y;.

Theorem (Hirschberg, '75)

Lij=LLCS(x1X2...Xi, Y1Y2...Yj). The values in this
matrix can be computed in O(mn) time and space.




Bit-Parallel Algorithm

Bit-parallel computation has same asymptotic
complexity but processes w entries of L in parallel (w :
machine word size).

Example (this leads to substantial speedup)

10 G-

char ops/s
=
o
o
=

— Standard LLCS | |
— Bit-parallel LLCS| 3

iImME /)

100 10k
Sequence length [char]
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How does it work?

@ AL(Lj)=L(;j))-L(i—-1,))e{0,1}
@ AL(i,j) is computed columnwise using
machine-word parallel operations :

~AL(L, ) «— (~AL(Lj)+
(~AL(i,j— 1) and M(x;)))
or (~AL(i,j— 1) and(~ M(x;)))

@ M maps characters to bit strings of length m,

MloeX) = lexi=0
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The Parallel Algorithm

@ Matrix L is partitioned into a grid of
rectangular blocks of size
(m/G) x (n/G) (G : grid size)
@ Blocks in a wavefront can be
processed in parallel
@ Assumptions:
@ Strings of equal length m=n

e Ratioa = % is an integer




Parallel Cost Model

@ When G > p, there can be multiple
stages for one block-wavefront

@ Running time
n 12
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Experiments: Systems Used

@ aracari: IBM cluster, 2-way SMP Pentium3 1.4 GHz
nodes (Myrinet 2000)

@ argus: Linux cluster, 2-way SMP Pentium4 Xeon 2.6
GHz nodes (100Mbit Ethernet)

@ skua: SGI Altix shared memory machine, Itanium-2
1.6 GHz processors



Experimental values of f and f’

Simple Algorithm (f)
skua 0.008 ns/op 130 M op/s
argus 0.016 ns/op 61 M op/s
aracari 0.012 ns/op 86 M op/s

Bit-Parallel Algorithm (f’)
skua 0.00022 ns/op 4.5 Gop/s
argus 0.00034 ns/op 2.9 G op/s
aracari 0.00055 ns/op 1.8 Gop/s



Running time [s] (logarithmic)

Good Results (LLCS) ...

Prediction Results
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Good Predictions

e ...on all distributed memory systems,
using both bit-parallel and standard
algorithm

e ...on the shared memory system only
for larger problem sizes, and for the
standard algorithm



Running time [s] (logarithmic)

Prediction Results

Not so good ones. .. (Oxtool, skua, 32 processors)
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What happened?

Cache size effects prevent prediction of computation
time. ..

lOGE

Sequential lei;mgd.wcs

computation g EE

performance on BT
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Sequence length [char]



Other Problems when Predicting
Performance

@ Setup costs only covered by parameter (
= difficult to measure
= Problems when communication size is small
@ PUB has performance break-in when
communication size reaches a certain value

@ Busy communication network can create
‘spikes’



Speedup for the Bit-Parallel
Version

@ Speedup lower than for the standard version

@ However, overall running times for same
problem sizes are shorter

@ Can only expect parallel speedup for larger
problem sizes

@ Latency is problematic, as computation times
are low.
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Oxtool PUB MPI
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LLCS (standard) Y ° oo
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Distributed memory, Ethernet (argus)
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LLCS (bit-parallel) ooo ') °

Distributed memory, Myrinet (aracari)

LLCS (standard) ooe oo
LLCS (bit-parallel) ' Y



Summary

@ BSP algorithms are efficient for dynamic
programming.

e Implementations benefit from a low latency
implementation (Oxtool/PUB)

e Very good predictability
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Technical improvements
@ Different modeling of bandwidth allows better
predictions
@ Using assembly can double bit-parallel performance

@ Lower latency possible by using subgroup
synchronization



Outlook

Technical improvements
@ Different modeling of bandwidth allows better
predictions
@ Using assembly can double bit-parallel performance
@ Lower latency possible by using subgroup
synchronization
Algorithmic improvements
@ Extraction of LCS possible, using post processing
step or other algorithm

@ Implementation of all-substrings LLCS (which has
many applications)

@ Design and study of subquadratic algorithms
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