This is so easy, someone else should have done it already. There is some code here: http://www.mathworks.co.uk/matlabcentral/fileexchange/25528-line-clipping. However, among other things (like using input), it doesn't check for lines parallel with the clipping window borders.

Wikipedia gives a variety of algorithms -- Liang/Barsky's algorithm is probably the one which one implement most quickly.

Here goes the code:

function [xx1, xx2] = clipped_line(vx1, vx2, v1, v2)
% function [xx1, xx2] = clipped_line(vx1, vx2, v1, v2)
%
% Liang-Barsky Algorithm for line clipping. See
% http://en.wikipedia.org/wiki/Liang%E2%80%93Barsky_algorithm
%
% Take a 2-D line from vx1 to vx2, and clip to rectangle with corners at
% v1, v2.
%
% Inputs must be vectors of length 2.
% Outputs are vectors of length 2. If no outputs are specified, a plot is
% made.
%

if length(vx1) ~= 2 || length(vx2) ~= 2 || length(v1) ~= 2 || length(v2) ~= 2
error('All inputs must be vectors of length 2.');
end

x0 = vx1(1);
x1 = vx2(1);
y0 = vx1(2);
y1 = vx2(2);

x_min = min(v1(1), v2(1));
x_max = max(v1(1), v2(1));
y_min = min(v1(2), v2(2));
y_max = max(v1(2), v2(2));

xx1 = nan(size(vx1));
xx2 = nan(size(vx2));

dx = x1 - x0;
dy = y1 - y0;

p = [ -dx;
dx;
-dy;
dy ];

q = [ x0 - x_min; % negative => left of window
x_max - x0; % negative => right of window
y0 - y_min; % negative => below window
y_max - y0; % negative => above window
];

% Test if line isn't visible.
% for i = 1:4
% if p(i) == 0 && q(i) < 0
% return;
% end
% end
if ~isempty(find(p == 0 & q < 0, 1, 'first'))
return;
end

u1 = 0;
u2 = 1;

for i = 1:4
if p(i) < 0
u1 = max(u1, q(i)/p(i));
end
if p(i) > 0
u2 = min(u2, q(i)/p(i));
end
end

if u1 > u2 % line is outside
return;
end

xx1(1) = x0 + dx*u1;
xx1(2) = y0 + dy*u1;

xx2(1) = x0 + dx*u2;
xx2(2) = y0 + dy*u2;

if nargout == 0
rectangle('position', [x_min y_min (x_max-x_min) (y_max-y_min)]);

l1 = line([x0 x1], [y0 y1]);
set(l1, 'color', 'k', 'linestyle', '--');
hold all
l2 = plot([xx1(1) xx2(1)], [xx1(2) xx2(2)], 'o-');
set(l2, 'linestyle', '-', 'linewidth', 2);

xlim([ min([x0, x1, x_min])-.1, max([x0, x1, x_max])+.1 ]);
ylim([ min([y0, y1, y_min])-.1, max([y0, y1, y_max])+.1 ]);
end

end

Now, running this:

figure; 

clipped_line([-1, -1], [3, 2], [0 0], [1 1]);
clipped_line([0.5, 0.3], [1.3, 0.7], [0 0], [1 1]);
clipped_line([-0.5, 1.2], [1.3, 0.7], [0 0], [1 1]);
clipped_line([-0.5, 0.7], [0.3, 0.7], [0 0], [1 1]);
clipped_line([0.2, 1.3], [0.1, -0.4], [0 0], [1 1]);

Makes this:

plot